
 1/44

From off-the-shelf embedded devices to 
research platforms. Two case studies: a 

PLC and a SSD

Lucian Cojocar
Herbert Bos

Vrije Universiteit of Amsterdam

10/02/2015



 2/44

Who I am
● Find back-doors in firmwares:

– Wrote a translator from binary to LLVM

– Used it for parser detection (to appear @ACSAC)

● Binary analysis, especially for firmwares
– Started with dynamic (firmware emulation system)

– Switched to static analysis

– Currently trying to use the best from both worlds

● Extract and analyze various firmwares



 3/44

Presentation outline

1. An introduction to hardware hacking
– What is a research platform?

– Why do we need re-purposing a device?

2. First showcase: a PLC
– An example of re-purposing a high-profile device.

3. Second showcase: a SSD
– Another embedded device that was re-purposed.

4. Call for contribution:
– We gather a list of such devices on this public wiki: 

http://embedded.labs.vu.nl

http://embedded.labs.vu.nl/


 4/44

Background
● Embedded devices are ubiquitous nowadays

– IoT buzzword (Shodan project)

– Old devices, out-dated code

– They are also cheap :-)

● We apply various security related techniques to the firmware 
of these devices
– The techniques are not necessarily new

– Most of them are binary based

● Regardless of the goal we have to extract the firmware and, in 
some cases, we have to execute code on them

Look at relevant devices and reuse them for testing



 5/44

Motivation of re-purposing
or why hardware hacking?

● It's fun :-)
● Analyze the firmware that runs
● Develop new generic techniques
● Test new security oriented ideas
● Deploy security mechanism to old devices

A researcher should invest most of the 
time in developing new ideas and not in 
finding the suitable device to test them



Motivation of re-purposing
or why hardware hacking?

● It's fun :-)
● Analyze the firmware that runs
● Develop new generic techniques
● Test new security oriented ideas
● Deploy security mechanism to old devices

A researcher should invest most of the 
time in developing new ideas and not in 
finding the suitable device to test them



 7/44

What does repurposing mean?
● Reusing an off-the-shelf embedded device with the goal 

of testing security related frameworks
● Roughly, this boils down to:

– Running new (or partially new) code and,

– Communicate with the target device.

● Examples:
– Avatar: Dynamic firmware analysis (Zaddach et al.) – 

showcased on a GSM phone and a HDD

– Firmalice: Detection of Authentification Bypass 
(Shoshitaishvili et al.) – tested on a camera and a printer

– PoC back-doors on printers, HDDs, IPCamera, SatPhones



 8/44

A primer on repurposing
or on hardware hacking

Roughly three steps:
● Reconnaissance phase

– Read the documentation and take the device apart

● Getting code execution
– JTAG, debug channel

● Communication channel
– UART interface, GPIO pin, display



 9/44

Reconnaissance phase (1)
● Read the description of the device
● Read reference manual and SDKs
● Previous errors (CVEs) reported for this device
● Firmware updates, different versions, change-logs
● How widely used is this device?
● Are there other researchers that are working with 

this device?
● In short: gather as much information as possible 

from the publicly available sources



 10/44

Reconnaissance phase (2)
Take it apart and look for:
● Test pads
● Known/Unknown chips
● Main SoC
● Unpopulated footprints
● Hidden headers
● Power lines
● Data-sheets
● Build a high-level diagram of the 

system



 11/44

Code execution (1)
● Software (via RFU or command injection)

– A bit of reverse engineering (on the FU) is required 
along with some trial and error

● Signature/checksum of the FU (if any)
● (Un)packing of the FU
● check of the FU (is it off-line or on-line)

– Are there any buggy software components used?
● Can we exploit these bugs?
● Updates are rare
● (manual) Fuzzing still effective in some cases



 12/44

Code execution (2)
● Hardware

– Debug signals of the main SoC (data-sheet is useful)
● JTAG, SWI, etc.
● Debug facilities are sometimes still enabled
● Look for unpopulated foot-prints at test patterns
● Good candidates for JTAG signals can be identified (Breeuwsma)

– Flash chips that may store code (don't be afraid to use the soldering 
iron)

● SPI flash is easy to access
● Sniff some data, identify when the chip is used
● Read and reprogram the chip
● Simple is better – start looking at smaller (in terms of storage) chips first

Start simple: use “while (1) ;” patterns for reprogramming and 
observe the behavior



 13/44

Communication channel (1)
● We need a way to communicate with the device

– Send and receive data

● Any controllable and observable signal can be used
– Most of the SoCs have an UART interface

● Usually, it requires reverse engineering of the firmware
– Identify the memory map (MMIO area)

– Polling code patterns – “while (*MMIO_ADDR & 0x40) ;”

– Search GPIO ports (LEDs indicating statuses might be 
connected to such ports)

– Exception handling routines may help



 14/44

Communication channel (2)
UART communication

● How to find the TX signal:

– Is there output?

– Trace (in firmware) the sync point of strings

– Look for pooling patterns followed by a single byte write

– If it is DMA, things are more complicated :-)

– It is rarely DMA

– Probe with the oscilloscope potential candidates on the PCB

● How to find the RX signal:

– Usually at the same (or very similar) MMIO address as the TX signal

– Same polling pattern

– Trial and error process: write code that is verbose after a byte is 
received through the RX signal



 15/44

Recap
● In principle repurposing has three steps:

– Reconnaissance phase
● Data-sheets, PCB inspection

– Code execution phase
● JTAG, SWD etc.

– Communication channel phase
● UART, GPIO etc.

● We will repurpose two embedded devices:
– PLC

– SSD



 16/44

PLC
(Programmable logic controller)

● Part of SCADA system
– S7-1200 Series

– Similar device was 
attacked by Stuxnet

– High-profile device

● Exact details are in the 
paper



 17/44

PLC goals

● We needed a test case for a research project
● The research framework used a GDB 

connection to a live system

 We implement a GDB server on this 
device



 18/44

PLC – reconnaissance (1)

Plenty of documentation available on-line
● On how to use the device, 
● And how to add expansion boards,
● And how to program (application) the device 

with,
● And how to connect a communication module,
● But nothing denoting what hardware is inside.



 19/44

PLC – reconnaissance (2)

Firmware updates were available
● Packed with unknown algorithm
● Not signed, only checksummed
● The checking was done online
● Known text strings present in the firmware update
● The update can be performed trough:

– A special MMC card, or

– Through a webserver

We tried to reverse the algorithm but it turned out 
to be faster to gain code execution by other means



 20/44

PLC – reconnaissance (3)
● Take it apart! (top)

– Three PCBs: power, 
actuators and logic

– Many test pads

– Network interface

– Unknown chips

– Extension headers

– Flash, RAM, SoC



 21/44

PLC – reconnaissance (4)
● Take it apart! (bottom)

– A nice SPI (1Mbit) flash

– Data-sheet available

– Two internal headers



 22/44

PLC – code execution (1)
● Firmware was checksummed and compressed

– The unpacking was done off-line

– We dropped the idea of modifying the FU

● Unknown SoC, no data-sheet available
– Previous versions of this PLC were ARM

– No obvious pattern of unpopulated header (JTAG)

● Let's investigate the SPI flash → to the scope!



 23/44

Anatomy of a bootloader
● Used only after the power-up
● Fairly small
● Does basic configs and check (RAM patterns)
● Loads a bigger code
● Finally, it jumps to the loaded code

The code in the SPI flash is a good 
candidate.



 24/44

PLC – code execution (2)
● Reflashed the bootloader with our code (j .)
● For testing: reflashed back the original 

bootloader
● The PLC was in good shape :-)

● We didn't had a stable version of the GDB stub
– Solution: man-in-the middle on SPI Flash

– Other solution might work



 25/44

PLC – code execution (3)
● Man-in-the middle on the SPI:

– Desolder only chip-select (CS), clock (CLK), data-in 
(DI)

– Either:
● clk_prog → clk_chip, or
● clk_board → clk_chip

● We achieved code execution – proof: j . blocks 
the boot process, we can see this on the LEDs



 26/44

PLC – communication channel (1)
● Two expansion ports (on each side of the CPU/PLC)
● CM 1241 RS232 is a nice module … and it is 

referenced in the manual … and it is connected to the 
above mentioned ports

● Reverse engineering:
– We bet that the serial port is used in the simplest 

configuration: polling. Idea: search for tight loops that are 
checking statuses

– There were not too many loops and not too many serial port 
types. 

– while (*(base+offset) & 0x40); *(base) = x;



 27/44

PLC – communication channel (2)

● How do we test this?
● Tight loop that writes characters at the 

presumably serial MMIO output register
● Use (again) the oscilloscope to probe around.



 28/44



 29/44



 30/44

PLC – communication channel (2)
● How do we test this?
● Tight loop that writes characters at the presumably 

serial MMIO output register
● Use the oscilloscope to probe around

● Even parity
● 26µs pulse width → 38400 bps
● two start bits
● LSB first



 31/44

PLC – results

● We applied the three phases to the PLC
– Achieved code execution by reprogramming the 

flash containing the bootloader

– The communication channel is established through 
the stock UART interface



 32/44



 33/44

Next device

● We applied the three phases to the PLC
● Let's move on to the SSD



 34/44

SSD
(Solid State Drive)

● Crucial MX100
– 128GB SATA 6Gb/s

● Pictures of the PCB on-line
● PCB is very light

– Not many components

Image from http://tweakers.net 

http://tweakers.net/


 35/44

SSD – reconnaissance
● FU are present
● More interesting things are 

on the PCB:
– Test pads

– Unpopulated (promising) 
footprints

– Known MCUs

– (mostly) Known SoC



 36/44

SSD – code execution (1)
● JTAG candidate

– Checked the ground pins

– It matched standard ARM pinout

● OpenOCD worked out of the box
● jtag newtap core0 cpu ­irlen 4 ­ircapture 
0x1 ­irmask 0xf ­expected­id 0x121003d3

● jtag newtap core1 cpu ­irlen 4 ­ircapture 
0x1 ­irmask 0xf ­expected­id 0x121003d3

● target create ssd_core0 dragonite ­endian 
little ­chain­position core0.cpu

● target create ssd_core1 dragonite ­endian 
little ­chain­position core1.cpu



 37/44

SSD – code execution (2)
● Two ARM cores 
● Memory read and write is working
● Code execution successfully tested

– Tested with a tight loop over a set of NOPs

– We are able to break code execution by halting the 
CPU via JTAG

– No caching problems

– Watchdog interferes when only one core is halted



 38/44

SSD – communication channel (1)
● Dump the memory through JTAG and inspect it:

– Debug strings are present in memory

– They should be printed

– The error logging routine is not hit during normal 
operation

● Tested by putting a breakpoint
● A MMIO address (allegedly of the UART port) is used by 

this routine

Run our own code and use the 
oscilloscope.



 39/44

SSD – communication channel (2)
● Default config:

– one stop bit

– no parity

– LSB order

– The pulse width 8.8μS → 115200 bps.

The position of the RX signal, on the PCB, is 
obvious.



 40/44

SSD – results

● We applied the three phases to the SSD
– Achieved code execution by making use of JTAG

– The communication channel is established through 
the UART interface



 41/44



 42/44

Results
● We showed how to repurpose two off-the-shelf embedded 

devices
● What we did with the PLC:

– Used dynamic analysis on it (symbex, taint tracking),

– Reported a bug in the PLC webserver (CVE-2014-2258)

– Used it as a test-case for parser detection (ACSAC 2015, to appear)

● What we did with the SSD:
– Used it as a test-case for parser detection

– Designed CTF challenges on it (work-in-progress)

– There are more things than can be done

● We believe that reproducibility of results is valuable for 
research, especially in this area.



 43/44

Let's share information about these 
embedded devices!

● Wiki: http://embedded.labs.vu.nl 
● Gather the information that is needed for 

repurposing:
– We do not share (or host) binaries

– We want to share the method of obtaining:
● Code execution
● Communication channel (if available)

● We do not want to overlap with *-wrt (SoHo 
routers may not be that interesting)

http://embedded.labs.vu.nl/


 44/44

Conclusion

● Repurposing of off-the-shelf embedded devices:
– We want to develop and test security related ideas

● How to do this:
– Three steps: reconnaissance, code execution and 

communication channel

● Share the information: http://embedded.labs.vu.nl
– We want to focus on ideas instead of random hacking

● Two devices: an PLC and an SSD

http://embedded.labs.vu.nl/

	Slide 1
	Slide 2
	outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	recon0
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	transition slide -> PLC
	PLC
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	bootloader
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	transition slide -> SSD
	SSD
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Results
	embedded.labs.vu.nl
	Conclusion

