

A Ghost in your Transmitter:

analyzing polyglot signals for physical layer covert channels detection

José Lopes Esteves,

Emmanuel Cottals and Chaouki Kasmi

E. Cottais, C. Kasmi, J. Lopes Esteves

- ANSSI-FNISA / Wireless Security Lab
 - □ 11 members, including 3 PhD
 - Electromagnetic security
 - RF communications security
 - Embedded systems
 - Signal processing

- Covert channels
- Polyglot signals
- Target QPSK transmission
- Generating covert polyglot signals
- Exploiting covert polyglot signals
- Detection techniques and counter-measures
- Conclusion

Covert channels

Definitions

- Covert channel:
 - Information transfer (uni- or bi-directional)
 - Entities not allowed to communicate
 - Channel not intended for communication
- Prerequisite: preliminary infection
 - Both ends know the covert channel
 - Both ends know the covert protocol
 - Out of scope of this talk

- Host based: communication between processes on a host [1]
 - □ Shared file system: file contents, file lock...
 - □ Shared hardware: DRAMA [2]...
- > Two classes:
 - Storage based
 - Timing based
- A lot of studies on design, characterization and detection

- Network based: communication between remote processes on connected hosts
- Information hidden in [1,3]:
 - Protocol Data Units
 - Through the timing of PDUs or protocol commands
- A lot of studies on design, characterization and detection
- Mostly > layer 3 channels

- Air gap based: communication between remote processes on disconnected hosts
- Exploitation of shared physical medium:
 - □ Light, pressure, vibration, sound, temperature, EM environment
- Also called physical covert channels
 - Modulate information directly on physical medium
- Recent security hype

Polyglot Signals

Physical layer network-based covert channels

- Goodspeed, Bratus, ReCon 2015 [4]
- > RF receivers are parsers
- Info received is different from info transmitted to upper layers:
 - Modulation
 - Error correction
- Try to recover familiar structures from unknown received signal

- Can be exploited for covert communications
- Exploit complementary modulations
- ASK modulation added to a PSK based protocol
 - □ The legitimate receiver will still get the PSK messages and will not consider amplitude variations, and likely correct them
 - □ The covert receiver is a ASK demodulator which will not consider the phase variations

- Covert polyglot signal for data exfiltration
 - ASK modulation added to a PSK based protocol

Covert polyglot signal for data exfiltration
 ASK modulation added to a PSK based protocol

- Covert polyglot signal for data exfiltration
 - ASK modulation added to a PSK based protocol
- > Attacker needs:
 - Minimize impact on legit channel
 - Maximize covert transmission quality
 - Minimize detectability
- Of course: trade-off!

- Is this technique limited to complementary modulations?
- How can an attacker generate a covert polyglot signal?
- Is it possible to efficiently detect such covert channels?

Target QPSK transmission

Back to school

Architecture of an IQ transmitter

> Transmitted signal:

$$x(t) = I(t) \cdot \cos(\omega_0 t + \varphi_0) - Q(t) \cdot \sin(\omega_0 t + \varphi_0)$$

Transmitted signal:

$$x(t) = I(t).\cos(\omega_0 t + \varphi_0) - Q(t).\sin(\omega_0 t + \varphi_0)$$

Received signal (ideal channel):

$$\begin{aligned} y_I(t) &= x(t) \cdot \cos(\omega_0 t + \varphi_0) \\ &= \frac{I(t)}{2} + \frac{I(t)}{2} \cdot \cos(2\omega_0 t + 2\varphi_0) - \frac{Q(t)}{2} \cdot \sin(2\omega_0 t + 2\varphi_0) \\ y_Q(t) &= x(t) \cdot \sin(\omega_0 t + \varphi_0) \\ &= \frac{I(t)}{2} \cdot \sin(2\omega_0 t + 2\varphi_0) - \frac{Q(t)}{2} + \frac{Q(t)}{2} \cdot \cos(2\omega_0 t + 2\varphi_0) \end{aligned}$$

After low-pass filtering:

$$y_I(t) = \frac{I(t)}{2}$$
 (*2) $\rightarrow y'_I(t) = I(t)$
 $y_Q(t) = -\frac{Q(t)}{2}$ (*-2) $\rightarrow y'_Q(t) = Q(t)$

Received signal constellation (ideal channel):

- Non-ideal channel:
 - □ Presence of noise
 - □ The receiver implements several correction blocks
- Especially:
 - □ IQ imbalance: amplitude and phase correction

Generating Covert Polyglot Signals

Finding entry points for attacking

Target QPSK transmitter

Transmitted signal:

$$x(t) = I(t) \cos(\omega_0 t + \varphi_0) - Q(t) \sin(\omega_0 t + \varphi_0)$$

GENERATING POLYGLOT SIGNALS

Transmitted signal

$$x(t) = I(t) \cos(\omega_0 t + \varphi_0) - Q(t) \sin(\omega_0 t + \varphi_0)$$

Software attack:

- Amplitude of I
- Amplitude of Q

Hardware attack:

- Amplitude of cos
- •Amplitude of sin
- Cos frequency
- Cos phase

- Sin frequency
- Sin phase

GENERATING POLYGLOT SIGNALS

- Software level
 - Configuration of radio front-end
 - Modification of IQ samples of SDR
 - Modification of FPGA code of SDR
- > How
 - Malicious device drivers
 - Software flowgraph alteration
 - Specially crafted firmware/bitstream [12]
- Modification of I and Q independently possible

GENERATING POLYGLOT SIGNALS

- Hardware level
 - Alteration of local oscillator(s) behaviour
 - Hardware trojan
 - EMC phenomena
- > How
 - Crosstalk, parasitic coupling, impedance mismatch
 - On power lines, on oscillator configuration lines (e.g. VCO, capacitors) [5]
- Separate operation on I and Q not straightforward

Exploiting Covert Polyglot Signals

Playing with the amplitude of I and Q

- Modulating the amplitude of IQ channels
 - Can be done from hardware or software

$$x(t) = I(t) \cdot (1 + \alpha) \cdot \cos(\omega_0 t + \phi_0) - Q(t) \cdot (1 + \beta) \cdot \sin(\omega_0 t + \phi_0)$$

$$x(t) = I(t) (1 + \alpha) \cdot \cos(\omega_0 t + \varphi_0) - Q(t) \cdot (1 + \beta) \cdot \sin(\omega_0 t + \varphi_0)$$

- Two example polyglot signals:
 - ASK over QPSK
 - QPSK over QPSK

> Transmitted signal:

$$x(t) = I(t).(1 + \alpha).\cos(\omega_0 t + \varphi_0) - Q(t).(1 + \beta).\sin(\omega_0 t + \varphi_0)$$

Received signal (ideal channel):

$$\begin{aligned} y_I(t) &= x(t).\cos(\omega_0 t + \varphi_0) \\ &= \frac{I(t)}{2}.(1+\alpha) + \frac{I(t)}{2}.(1+\alpha).\cos(2\omega_0 t + 2\varphi_0) - \frac{Q(t)}{2}.(1+\beta).\sin(2\omega_0 t + 2\varphi_0) \\ y_Q(t) &= x(t).\sin(\omega_0 t + \varphi_0) \\ &= \frac{I(t)}{2}.(1+\alpha).\sin(2\omega_0 t + 2\varphi_0) - \frac{Q(t)}{2}.(1+\beta) + \frac{Q(t)}{2}.(1+\beta).\cos(2\omega_0 t + 2\varphi_0) \end{aligned}$$

After low-pass filtering:

$$y_{I}(t) = \frac{\dot{I}(t)}{2} \cdot (1 + \alpha) \qquad (*2) \rightarrow y'_{I}(t) = I(t) \cdot (1 + \alpha)$$
$$y_{Q}(t) = -\frac{Q(t)}{2} \cdot (1 + \beta) \qquad (*-2) \rightarrow y'_{Q}(t) = Q(t) \cdot (1 + \beta)$$

$$\alpha = \frac{x2 - x1}{x1}$$

$$\beta = \frac{y2 - y1}{y1}$$

- > IQ imbalance correction block will:
 - Consider α and β effects as noise
 - Compensate α and β
- Transparent for legit receiver

- \triangleright On the covert receiver, how to recover α and β ?
 - We suppose α and β small
 - Do not change symbol quadrant (we target QPSK)
 - Compare received samples with expected ones

$$y'_I(t) = I(t) \cdot (1 + \alpha)$$

$$y''_{I}(kT) = \frac{y'_{I}(kT)}{I(kT)} = (1 + \alpha)$$

$$\alpha = -1 + \frac{y'_I(kT)}{I(kT)}$$

$$y'_{0}(t) = Q(t) \cdot (1 + \beta)$$

$$y''_{Q}(kT) = \frac{y'_{Q}(kT)}{Q(kT)} = (1 + \beta)$$

$$\beta = -1 + \frac{y'_{Q}(kT)}{Q(kT)}$$

Covert receiver data recovery:

Original and recovered

Spectrum of recovered α

ASK over QPSKJust choose α = β

Data bit	Interference sign
0	α>0 and β>0
1	α<0 and β<0

- QPSK over QPSK
 - Just give α and βtwo possible values

Data	Interference sign
00	α>0 and β>0
01	α>0 and β<0
10	α<0 and β>0
11	α<0 and β<0

Detection techniques and

Counter-measures

Advanced signal processing

DETECTION TECHNIQUES

- Detection of such data exfiltration
 - Instrumentation of observables
 - Extract features of correction blocks at receiver
 - IQ imbalance correction [6]
 - Measuring the mismatch between parallel section of receivers
 - Fixing coefficient update interval -> limitation for detection!
 - Carrier recovery [7]
 - Phase/ Frequency differences
 - Estimate and compensate differences between RX and TX signals
 - Equalization algorithm [8]
 - Inter-symbol interference suppression -> detecting cyclic symbol modifications
 - Coefficients updated each packet
 - Monitoring of the variation of the correction coefficients

DETECTION TECHNIQUES

Almost random correction

Repetitive correction

Presence of periodic variations

DETECTION TECHNIQUES

- Detection of such data exfiltration
 - Implementation of a dedicated detection system
 - Prospective thoughts
 - Use of signal processing algorithms
 - Wavelet transform: recursive LF vs HF analysis [9]
 - Use blind demodulation techniques [10]
 - Input: IF signal, baseband
 - <u>Features</u>: amplitude, phase, phase difference, frequency, Cyclic Spectral analysis, complex envelop
 - Statistics: histogram, STD,
 - Classifier: maximum likelihood, max correlation, decision tree

COUNTER-MEASURES

- At FPGA level
 - Verify the integrity of the code at startup
 - Prevent code to be modified/rewritten
- At hardware level
 - Design hardened RF front-end
 - Active self test of hardware with control loops
 - Avoid coupling path (follow electronic rules and guidelines)
 - EMC Tests of PCB's with improved EMSEC capabilities
- At fab. level
 - Check PCB's fabrication process
 - Masks validation

CONCLUSION

- Polyglot signals:
 - Interesting phy layer network covert channels
- Attack vector:
 - Software based: can be a malware
 - Hardware based: can be a HW trojan (or interference)
- Not limited to complementary modulations
 - QPSK in QPSK
 - Any modulation should work on any modulation

CONCLUSION

- Channel capacity depends on:
 - Legitimate transmission
 - Covert transmission choices
- We propose detection methods:
 - Use correction blocks
 - Already present in receivers
 - Look for periodicity in correction factors
- Additional ideas:
 - Blind demodulation techniques

FURTHER THOUGHTS

- Explore the hardware based attack
 - We like RF interference
 - And HW trojans
- Covert channel is a hot topic
- Need of new detection systems
- Investigate physical layers against hidden communication
- Implementation of specific processes to avoid/detect HW trojans

REFERENCES

- [1] Wojciech Mazurczyk et al., "Information Hiding in Communication Networks: Fundamentals, Mechanisms" March 2016, Wiley and Sons, 2016
- [2] Peter Pessl, "DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks", 25th Usenix Security Symposium 2016, August 2016
- [3] E. Tumoian and M. Anikeev, "Network Based Detection of Passive Covert Channels in TCP/IP," The IEEE Conference on Local Computer Networks 30th Anniversary (LCN'05)I, Sydney, NSW, 2005
- [4] Travis Goodspeed, Sergey Bratus, "Polyglots and Chimeras in Digital Radio Modes", Recon 2015, 2015
- [5]Ramon Cerda, "Sources of Phase Noise and Jitter in Oscillators", March 2006, online: http://www.crystek.com/documents/appnotes/SourcesOfPhaseNoiseAndJitterInOscillators.pdf
- [6] J. Tubbax et al., "Compensation of IQ imbalance and phase noise in OFDM systems," in IEEE Transactions on Wireless Communications, vol. 4, no. 3, pp. 872-877, May 2005.
- [7] Timo Pfau et al., "Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for -QAM Constellations", Journal of lightwave technology, April 15, 2009
- [8] L. He and S. A. Kassam, "Convergence analysis of blind equalization algorithms using constellation-matching," in IEEE Transactions on Communications, vol. 56, no. 11, pp. 1765-1768, November 2008.
- [9] QI Li-mei et al., "Wavelet Transform Theory and Its Application in Signal Processing", Journal of University of Electronic Science and Technology of China, March 2008
- [10] Octavia A. Dobre et al., "Blind Modulation Classification: A Concept Whose Time Has Come", Course online material: http://ntrg.cs.tcd.ie/en/TCD VT Course Cognitive Radios and Networks/Week%204/Readings%20and%20discussion%20Q uestions/dobre2005.pdf
- [11] S. Ghosh, A. Basak and S. Bhunia, "How Secure Are Printed Circuit Boards Against Trojan Attacks?," in IEEE Design & Test, vol. 32, no. 2, pp. 7-16, April 2015.
- [12] Chrsitian Krieg, Clifford Wolf, and Axel Jantsch. Malicious LUT: A stealthy FPGA trojan injected and triggered by the design flow. In Proceedings of the International Conference on Computer Aided Design (ICCAD), Austin, Texas, November 2016.

- Emmanuel Cottais, emmanuel.cottais@ssi.gouv.fr
- Chaouki Kasmi, chaouki.kasmi@ssi.gouv.fr
- ▶ Jose Lopes Esteves, jose.lopes-esteves@ssi.gouv.fr

AMPLITUDE-BASED EXFILTRATION

Simulation results

- $\alpha = \pm 0,1$
- \square $\beta=\pm0,1$
- □ Freq. legit = 500Hz
- \Box Freq. $\alpha = 100$ Hz
- \Box Freq. β = 100Hz

Received constellation