
*

RIDLed with CPU bugsRIDLed with CPU bugs

Stephan van Schaik - Alyssa Milburn

Sebastian Österlund - Pietro Frigo - Giorgi Maisuradze*

Kaveh Razavi - Herbert Bos - Cristiano Guiffrida

CPUCPU

THE CLOUDTHE CLOUD

ISOLATIONISOLATION

Processes

Containers

Virtual machines

We trust CPUs to isolate virtual machines..

OH-OH!OH-OH!

CPU ERRATACPU ERRATA

CPU ERRATACPU ERRATA

CPU ERRATACPU ERRATA

CPU ERRATACPU ERRATA

PIPELINESPIPELINES

We blindly trust CPU pipelines

We don’t know how they work

SPECULATIVE EXECUTIONSPECULATIVE EXECUTION

doX(a)

a = compute()

error()

if (a)

a = compute()

doX(a)if (a)

Time

a = compute()

doX(a)if (a)

Time

a = read memory

doX(a)if (allowed to
read memory)

Time

EXCEPTION DEFERRALEXCEPTION DEFERRAL

TODAYTODAY

Intel CPUs are everywhere

Intel has a bounty program

INTEL CPUINTEL CPU

CPUCPU

INTEL CPUINTEL CPU

TODAYTODAY

One class of Intel pipeline "bugs": MDS

MDS ATTACKSMDS ATTACKS

MDS ATTACKSMDS ATTACKS

MDS ATTACKSMDS ATTACKS

MDS ATTACKSMDS ATTACKS

MDS ATTACKSMDS ATTACKS

MDS ATTACKSMDS ATTACKS

Let’s first talk about cache attacks

BACKGROUNDBACKGROUND

BACKGROUNDBACKGROUND

BACKGROUNDBACKGROUND

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

FLUSH + RELOADFLUSH + RELOAD

PREVIOUS ATTACKSPREVIOUS ATTACKS

PREVIOUS ATTACKSPREVIOUS ATTACKS

Meltdown

Spectre

Foreshadow or L1TF

MITIGATIONSMITIGATIONS

Kernel Page Table Isolation

Array index masking

XOR masking

KPTIKPTI

Problem: leak kernel data from virtual addresses

KPTIKPTI

Solution: unmap kernel addresses

So we have a system with all mitigations in-place

pcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch
 cpuid_fault cat_l3 cdp_l3 invpcid_single pti ssbd mba ibrs ibpb stibp tpr_
shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2
smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap c
lflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1
xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pl
n pts hwp hwp_act_window hwp_pkg_req flush_l1d
%
[sebastian@sarek ~]$ grep . /sys/devices/system/cpu/vulnerabilities/*
/sys/devices/system/cpu/vulnerabilities/l1tf:Mitigation: PTE Inversion; VM
: conditional cache flushes, SMT vulnerable
/sys/devices/system/cpu/vulnerabilities/meltdown:Mitigation: PTI
/sys/devices/system/cpu/vulnerabilities/spec_store_bypass:Mitigation: Spec
lative Store Bypass disabled via prctl and seccomp
/sys/devices/system/cpu/vulnerabilities/spectre_v1:Mitigation: __user poin
er sanitization
/sys/devices/system/cpu/vulnerabilities/spectre_v2:Mitigation: Full generi
 retpoline, IBPB: conditional, IBRS_FW, STIBP: conditional, RSB filling
%
[sebastian@sarek ~]$

What can we still do as an attacker?

%
[sebastian@sarek ridl]$ cat /etc/shadow
cat: /etc/shadow: Permission denied
%
[sebastian@sarek ridl]$ sudo cat /etc/shadow | head -n 1
root:6sP/i.m6uVkNRJgpV$vyndShgzWmeWI8Bx8RbGCkj2SVvQ.bjqwRafe6rdnotl8ndQkv
H/wf1u.cF31o9IeOW/Ub/6CVEdbCJioHplW/:17828:0:99999:7:::
%
[sebastian@sarek ridl]$./hackpasswd root:
root:6sP/i.m6uVkNRJgpV$vyndShgzWmeWI8Bx8RbGCkj2SVvQ.bjqwRafe6%
[sebastian@sarek ridl]$

Meet Rogue In-flight Data Load or RIDL

A new class of speculative execution attacks

that knows no boundaries

Privilege levels are just a social construct

SECURITY DOMAINSSECURITY DOMAINS

We can leak between hardware threads!

SECURITY DOMAINSSECURITY DOMAINS

But can we leak across other security domains?

SECURITY DOMAINSSECURITY DOMAINS

Yes, we can!

SECURITY DOMAINSSECURITY DOMAINS

We leak from the kernel …

SECURITY DOMAINSSECURITY DOMAINS

... across VMs …

SECURITY DOMAINSSECURITY DOMAINS

... from the hypervisor …

SECURITY DOMAINSSECURITY DOMAINS

... and from SGX enclaves!

We leak across all security domains!

SECURITY DOMAINSSECURITY DOMAINS

Can we leak in the web browser?

SECURITY DOMAINSSECURITY DOMAINS

Yes, we can!

We reproduced RIDL in Mozilla Firefox

⇒ No need for special instructions

We leak across security domains, and in the browser!

Memory addresses are a social construct too

PREVIOUS ATTACKSPREVIOUS ATTACKS

Previous attacks show we can speculatively leak from addresses

PREVIOUS ATTACKSPREVIOUS ATTACKS

Our mitigation efforts focus on isolating/masking addresses

Spectre: access out-of-bound addresses

Meltdown: leak kernel data from virtual addresses

Foreshadow: leak from physical address

Spectre: mask array index to limit address range

Meltdown: unmap kernel addresses from userspace

Foreshadow: invalidate physical address

PREVIOUS ATTACKSPREVIOUS ATTACKS

Previous attacks exploit addressing

Mitigation by isolating/masking addresses

RIDLRIDL

RIDL does not depend on addressing:

⇒ Bypass all address-based security checks

⇒ Makes RIDL hard to mitigate

What CPUs does RIDL affect?

We bought Intel and AMD CPUs from almost every generation since 2008

... and sent the invoices to our professor Herbert Bos

RIDL works on all mainstream Intel CPUs since 2008

Intel announces Coffee Lake Refresh

In-silicon mitigations against Meltdown and Foreshadow

Let’s buy the Intel Core i9-9900K!

... and send another invoice to our professor Herbert Bos

We got it the day after we submitted the paper

===

RIDL works regardless of these in-silicon mitigations

AMDAMD

We also tried to reproduce it on AMD

AMDAMD

We also tried to reproduce it on AMD

RIDL does not affect AMD

But where are we actually leaking from?

LEAKY SOURCESLEAKY SOURCES

LEAKY SOURCESLEAKY SOURCES

Previous attacks had it easy, they leak from caches

LEAKY SOURCESLEAKY SOURCES

Caches are well documented and well understood.

LEAKY SOURCESLEAKY SOURCES

But RIDL does not leak from caches!

LEAKY SOURCESLEAKY SOURCES

But what else is there to leak from?

LEAKY SOURCESLEAKY SOURCES

There are other internal CPU buffers

LEAKY SOURCESLEAKY SOURCES

Line Fill Buffers, Store Buffers and Load Ports

LEAKY SOURCESLEAKY SOURCES

But there is more!

LEAKY SOURCESLEAKY SOURCES

Uncached Memory

We can leak from various internal CPU buffers!

RIDL is a class of speculative execution attacks

also known as Micro-architectural Data Sampling

Let’s focus on one particular instance:

Line Fill Buffers

MANUALSMANUALS

We first read the manuals

Some references to internal CPU buffers

But no further explanation

Where would you even start?

That’s why we started reading patents instead!

We read a lot of patents, and survived!

So today I can tell you a bit more about them

But wait, what are these

Line Fill Buffers?

LINE FILL BUFFERS?LINE FILL BUFFERS?

Central buffer between execution units, L1d and L2 to improve memory throughput

LINE FILL BUFFERS?LINE FILL BUFFERS?

Central buffer between execution units, L1d and L2 to improve memory throughput

LINE FILL BUFFERS?LINE FILL BUFFERS?

Central buffer between execution units, L1d and L2 to improve memory throughput

LINE FILL BUFFERS?LINE FILL BUFFERS?

Central buffer between execution units, L1d and L2 to improve memory throughput

LINE FILL BUFFERS?LINE FILL BUFFERS?

Multiple roles:

Asynchronous memory requests

Load squashing

Write combining

Uncached memory

LINE FILL BUFFERS?LINE FILL BUFFERS?

Multiple roles:

Asynchronous memory requests

Load squashing

Write combining

Uncached memory

LINE FILL BUFFERS?LINE FILL BUFFERS?

CPU design: what to do on a cache miss?

Send out memory request

Wait for completion

Blocks other loads/stores

LINE FILL BUFFERS?LINE FILL BUFFERS?

Solution: keep track of address in LFB

Send out memory request

Allocate LFB entry

Store address in LFB

Serve other loads/stores

Pending request eventually completes

LINE FILL BUFFERS?LINE FILL BUFFERS?

Solution: keep track of address in LFB

Send out memory request

Allocate LFB entry

Store address in LFB

Serve other loads/stores

Pending request eventually completes

LINE FILL BUFFERS?LINE FILL BUFFERS?

Allocate LFB entry

May contain data from previous load

RIDL exploits this

EXPERIMENTSEXPERIMENTS

Experiments in the paper

EXPERIMENTSEXPERIMENTS

Experiments in the paper

EXPERIMENTSEXPERIMENTS

Experiments in the paper

EXPERIMENTSEXPERIMENTS

Conclusion: our primary RIDL instance leaks from Line Fill Buffers

Cool… so how do we actually mount a RIDL attack?

IDEASIDEAS

We can leak in-flight data

Let’s get some sensitive data in-flight!

LOCAL ATTACKERLOCAL ATTACKER

/ETC/SHADOW/ETC/SHADOW

 $ strace passwd 2>&1

 ...

 openat(
 AT_FDCWD,
 "/etc/shadow",
 O_RDONLY|O_CLOEXEC
)

CONFUSED DEPUTYCONFUSED DEPUTY

passwd opens /etc/shadow

Can we get this on the other Hyper-Thread?

 taskset -c 3 ./passwd.sh

 while true; do

 passwd -S;

 done

CHALLENGESCHALLENGES

CHALLENGESCHALLENGES

What does this program look like?

CHALLENGESCHALLENGES

RIDL is like drinking from a fire hose

You just get whatever data is in flight!

CHALLENGESCHALLENGES

We need to synchronize or do some post-processing

CHALLENGESCHALLENGES

We need to synchronize or do some post-processing

Synchronize: could be done using cache attacks, but we’re lazy

CHALLENGESCHALLENGES

We need to synchronize or do some post-processing

Synchronize: could be done using cache attacks, but we’re lazy

Post-processing: we can repeat measurements, stitch them together?

FILTERING DATAFILTERING DATA

How can we filter data?

We want to leak from /etc/shadow

First line /etc/shadow is for root

Starts with "root:"

Use prefix matching:

Match ⇒ we learn a new byte

No Match ⇒ discard

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

FILTERINGFILTERING

CHALLENGESCHALLENGES

RESULTRESULT

We can leak the root password hash from an unprivileged user

RESULTRESULT

We can leak the root password hash from an unprivileged user

Let’s extend this a bit…

RESULTRESULT

We can leak the root password hash from an unprivileged user

Let’s extend this a bit…

to the cloud!

THREAT MODELTHREAT MODEL

Victim VM in the cloud

THREAT MODELTHREAT MODEL

We get a VM on the same server

THREAT MODELTHREAT MODEL

We make sure it is co-located

THREAT MODELTHREAT MODEL

Victim VM runs an SSH server

IN-FLIGHT DATAIN-FLIGHT DATA

How do we get data in flight?

IN-FLIGHT DATAIN-FLIGHT DATA

We run an SSH client…

IN-FLIGHT DATAIN-FLIGHT DATA

... that keeps connecting to the SSH server

IN-FLIGHT DATAIN-FLIGHT DATA

The SSH server loads /etc/shadow through LFB

IN-FLIGHT DATAIN-FLIGHT DATA

The contents from /etc/shadow are in flight

LEAKINGLEAKING

Now that the data is in flight, we want to leak it

LEAKINGLEAKING

We run our RIDL program on our server…

LEAKINGLEAKING

...which leaks the data from the LFB

WHAT ELSE?WHAT ELSE?

SPECTRESPECTRE

a = compute()

doX(a)if (a)

Time

RIDL + SPECTRERIDL + SPECTRE

We can use Spectre in combination with RIDL

Train branch predictor to trust us

Surprise it with an unexpected pointer

RIDL + SPECTRERIDL + SPECTRE

p = system call parameter

read memory from pif (p points to
userspace)

Time

ARBITRARY KERNEL LEAKARBITRARY KERNEL LEAK

copy_from_user() can access arbitrary user-supplied pointer

Repeatedly call setrlimit() with valid user pointer to train branch
predictor

After training, we supply it a kernel pointer we want to leak

Will be executed speculatively, pulled into LFB

At the same time we leak using RIDL

WHAT NEXT??WHAT NEXT??

We attacked the cloud and have an arbitrary kernel read.

We still need a local account on the target…

FROM THE BROWSERFROM THE BROWSER

PORTABILITYPORTABILITY

No TSX or other speculation mechanisms

Can’t use invalid pointers

clflush is too useful

PORTABILITYPORTABILITY

No clflush

Touch eviction sets

No TSX/invalid pointers

Use demand paging to generate "valid" page faults

PORTABILITYPORTABILITY

/* Evict buffer from cache. */
evict(buffer);

/* Speculatively load the secret. */
char value = *(new_page);

/* Calculate the corresponding entry. */
char *entry_ptr = buffer + (1024 * value);

/* Load that entry into the cache. */
*(entry_ptr);

/* Time the reload of each buffer entry to
 see which entry is now cached. */
for(k=0;k<256;++k){
 t0 = cycles();
 *(buffer + 1024 * k);
 if (cycles - t0 < 100) ++results[k];
}

FROM THE BROWSERFROM THE BROWSER

We can generate this code from WebAssembly!

FROM THE BROWSERFROM THE BROWSER

FROM THE BROWSERFROM THE BROWSER

[LOG] - [0x20] = 12
[LOG] - [0x49] = 67 I
[LOG] - [0x74] = 46 t
[LOG] - [0x27] = 23 '
[LOG] - [0x73] = 111 s
[LOG] - [0x20] = 36
[LOG] - [0x6d] = 101 m
[LOG] - [0x65] = 109 e
[LOG] - [0x20] = 116
[LOG] - [0x4d] = 69 M
[LOG] - [0x61] = 125 a
[LOG] - [0x72] = 162 r
[LOG] - [0x69] = 125 i
[LOG] - [0x6f] = 72 o
[LOG] - [0x21] = 13 !
[LOG] - [0x22] = 10 "
[LOG] - Time16.45495575
[LOG] - 0.9115794796348814B/s
pit@cutiesky:~/ridl-js$ exit

MORE EXAMPLESMORE EXAMPLES

Also mentioned in our paper:

Leaking from ports

Reading SGX registers (again..)

Leaking internal CPU data (e.g. page tables)

MITIGATIONSMITIGATIONS

EXISTING MITIGATIONSEXISTING MITIGATIONS

Before May, three mechanisms:

Inhibit Trigger (stop speculation, fences, retpoline)

Hide Secret (KPTI, array index masking, L1D flush)

Disrupt channel of leakage (disable timers)

RIDL MITIGATIONSRIDL MITIGATIONS

Introduced in May:

Same-thread:

verw overwrites affected buffers

Special Assembly snippets

MD_CLEAR WORKARAOUNDMD_CLEAR WORKARAOUND

 __asm__ __volatile__ (
 "lfence\n\t"
 "orpd (%1), %%xmm0\n\t"
 "orpd (%1), %%xmm0\n\t"
 "xorl %%eax, %%eax\n\t"
 "1:clflushopt 5376(%0,%%rax,8)\n\t"
 "addl $8, %%eax\n\t"
 "cmpl $8*12, %%eax\n\t"
 "jb 1b\n\t"
 "sfence\n\t"
 "movl $6144, %%ecx\n\t"
 "xorl %%eax, %%eax\n\t"
 "rep stosb\n\t"
 "mfence\n\t"
 : "+D" (dst)
 : "r" (zero_ptr)
 : "eax", "ecx", "cc", "memory"
);

RIDL MITIGATIONSRIDL MITIGATIONS

Introduced in May:

Same-thread:

verw overwrites affected buffers

Special Assembly snippets

Cross-thread:

Complex scheduling and synchronization

RIDL MITIGATIONSRIDL MITIGATIONS

RIDL MITIGATIONSRIDL MITIGATIONS

Same-thread:

verw overwrites affected buffers

Special Assembly snippets

Cross-thread:

Complex scheduling and synchronization

Disable Intel Hyper-Threading®

SPOT MITIGATIONSSPOT MITIGATIONS

FUTURE OF MITIGATIONSFUTURE OF MITIGATIONS

Looking at our diagram, there might be other issues…

TAKE HOME MESSAGETAKE HOME MESSAGE

These issues need to be fixed!

HardFails: Insights into Software-Exploitable Hardware Bugs

Ghada Dessouky, David Gens, Arun Kanuparthi, Hareesh Khattri, Jason M. Fung, Ahmad-Reza Sadeghi and

Jeyavijayan Rajendran

Technische Universität Darmstadt;

Texas A&M University;

Intel Corporation

Disclosure process

MDS TOOLMDS TOOL

Stephan wrote a tool to verify your system:

CONCLUSIONCONCLUSION

Spectre and Meltdown, just one mistake?

New class of speculative execution attacks

Many more buffers other than caches to leak from

How many bugs are left?

CONCLUSIONCONCLUSION

Spectre and Meltdown, just one mistake?

New class of speculative execution attacks

Many more buffers other than caches to leak from

How many bugs are left?

@themadstephan @noopwafel @vu5ec

 https://mdsattacks.com

https://www.twitter.com/themadstephan
https://www.twitter.com/noopwafel
https://www.twitter.com/vu5ec
https://mdsattacks.com/

