
Under the hood of a CPU
Reverse Engineering Intel’s P6 Microcode

hardwear.io The Netherlands 2020

Peter Bosch

@peterbjornx

me@pbx.sh

About me
● Computer Science/Physics student at Leiden

University

● Past work includes

○ Writing an emulator for the Intel ME

■ 36C3 Talk: Intel Management

Engine Deep Dive

○ CVE-2019-11098 (Intel Boot Guard SPI

bus TOCTOU vulnerability) (with @qrs)

■ HITB2019 Talk: Now You See It:

TOCTOU Attacks Against Secure

Boot and BootGuard

Twitter: @peterbjornx

E-mail: me@pbx.sh

x86 != native instruction set
● MacroInstructions are converted to microinstructions (uops)

● Simple instructions map 1-to-1 : ADD EAX, REG becomes EAX:= ADD EAX,

REG

● More complicated instructions yield multiple uops

● Even more complicated instructions and other architectural details invoke a full

microprogram

Getting to these microprograms
● Download an update and extract it?

Getting access to these microprograms
● Download an update and extract it?

● Extract from running system?

LDAT Ports

More info: https://pbx.sh/ldat/

Getting access to these microprograms

● Download an update and extract it?

● Extract from running system?

https://github.com/chip-red-pill/glm-ucode

Atom Goldmont!

Getting access to these microprograms
● Download an update and extract it?

● Extract from running system?

● Extract from mask ROM?

Getting access

Image by Martijn Boer,
https://www.flickr.com/photos/sic66/42522440724/in/album-72157689303100124/

6 cols

https://github.com/AdamLaurie/rompar

First attempt

Better photos

0 1 2 3

0 1 2 3

Crop ROM cell pairs

Average along Y axis
and normalize

ROM image

Cell images 1D cell function

Unknown cell function

x

Reference cell functions

r

Cell scores

pladecode
https://github.com/peterbjornx/pladecode

● Decodes mask-programmed ROM and PLAs

● Outputs

○ C simulator code for PLA

○ Text representation of ROM

● Qt based UI exposes all state

L

R

128 x 420

128 x 408

6 cols

Source: US5559974, Fig 3

Source: US5559974, Fig 5

t = a
a = b
b = t

Known semantics: XCHG

Source? Dest?

t = getsegsel($seg)
store...

Finding fields by comparison

Logical
Segment

Mapping this onto the ROM
● 432+24+48+420 = 924 columns per physical row

● 72 bit microinstruction word

● 3 microinstructions per cycle from ROM

● 128 rows per block

Row interleaving

A0 B0 C0

A1 B1 C1

A2 B2 C2

A3 B3 C3

A0 B0A1 A2 A3 B1 B2 B3 C0 C2C1 C3

Google find!

Putting it to use

The microinstruction encoding, so far.

● The obvious 3 operand form fields: opcode, src1, src2, dest
● FlowMarker:

○ Indicates Beginning Of Macroinstruction (BOM), End of Macroinstruction (EOM) and other
flow control metadata

Instructions and Opcodes

US5574942A

Immediate Operands

Immediate Operands
● Only 9 bits for Immediate

● Immediate Alias Control field selects source for “immediate” data

○ 0x11 seems to select Macroinstruction Alias, IMM field selects which MAR register

■ 0x0 Macroinstruction Immediate

■ 0x10 REG_Op_Size (Operand size in bytes)

■ 0x11 virt_ip

■ 0x12 next_virt_ip

● 0x04 seems to be used for sign-extended literal, where the data is signext(IMM)

● 0x16, 0x0E also seem to be literal?

● Constant ROM?

Registers: LSrc1,2 and Dest
Index 0x00 0x08 0x10 0x18 0x20 0x28 0x30 0x38

0 CONST AL ST(0) AX EAX

1 SINK CL ST(1) CX ECX

2 TMP0 DL ST(2) DX EDX

3 TMP1 BL ST(3) BX EBX

4 TMP2 AH ST(4) FCC SP ESP

5 TMP3 CH ST(5) ArirthFlags BP EBP

6 TMP4 DH ST(6) FSW SI ESI

7 TMP5 BH ST(7) SystemFlags DI EDI

Ind
ex

0x50 0x70 0x88 0xA8 0xC0 0xC8

0 (E)AX (E)AX REG_sss

1 (E)CX (E)CX

2 MMX Source (E)DX (E)DX

3 (E)BX (E)BX

4 ST(i) (E)SP (E)SP Reg in Opcode REG_ddd

5 (E)BP (E)BP

6 MMX Dest (E)SI (E)SI

7 (E)DI (E)DI

Registers: LSrc1,2 and Dest

Index 0x00 0x08

0 SEG_SINK ES

1 CS

2 SS

3 DS

4 FS

5 GS

6 GDTR

7 LDTR TR

Segments

IDTR?

LINSEG?

PHYSEG?

Control registers
Shown microcode is CNL, from Github

Some example microcode flows: DIV

Some example microcode flows

Some example microcode flows

Some example microcode flows

Future work
● Complete ROM extraction:

○ Finish capturing all ROM blocks (3/6 done)

○ Determine uopcode[6] column

● Map out more opcodes and registers

● Determine Entry Point PLA input format and extract macro-op entry points

● Find constant ROM

● Map out CRBUS addresses

● Determine update encryption mechanism

Acknowledgements
● Martijn Boer (https://www.flickr.com/people/sic66/)

○ Provided me with the high-resolution scans of the ROM and

PLAs

● RevSpace (Hackerspace The Hague)

○ for being a community full of great ideas and a place to work on

such complicated projects.

● Alyssa Milburn (@noopwafel)

○ who keeps taunting me with crazy project ideas.

● Peter Cywinski

○ whose auction site trawling got me the microscope upgrades

that made this possible

● Many others

