
ptsecurity.com

Blackboxing
Diebold-Nixdorf ATMs

Vladimir Kononovich

Senior ICS Security Specialist

Alexei Stennikov

Independent Researcher

Who are we?

Vladimir Kononovich:

•Reverse-engineering (since 2008)
•Romhacking (my hobby)
•Writing tools for IDA/Ghidra
•Ghidra ideologist

Who are we?

Alexei Stennikov:

•Hardware expert
•ICS/SCADA security researcher
•ATM/POS security researcher
•Some skills of RE

ATM hardware internals

•Less-secure upper part
•Safe-zone (lower part)

Safe-zone includes a
dispenser controller

Our previous talk at hw.io

•ATM internals
•ATM attacks types
•What is Blackbox attack?
•NCR dispensers vulnerability

Our
hardwear.io 2018
talk (youtube)
https://www.youtube.com/watch?v=L5yl4A1npVU

https://www.youtube.com/watch?v=L5yl4A1npVU

Paderborn, we have a problem

• FW downgrade

• Modified
FW uploading

• SmartCard DoS
“feature”

• Encryption
bypass

• Withdrawal

RM3/CMDv5 firmware files

•BTR (bootloader)
•FRM (main firmware)

Parts:

• RM3_CRS.BTR / CD5_ATM.BTR
• RM3_CRS.FRM / CD5_ATM.FRM

Files:

• Device id • Product id • Vendor id

• ? • “UFD” • ?

• CRC32
• Some size • Firmware part name

The rest is encrypted. No chance to decrypt.
Thank you for watching! Bye:)

But wait…

eBay can help us! Again…

Demo

JTAG: Identifying connector & pins

1 • VREF • VSUPPLY 2

3 • nRST • GND 4

5 • TDI • GND 6

7 • TMS • GND 8

9 • TCK • GND 10

11 • RTCK • GND 12

13 • TDO • GND 14

15 • nRST • GND 16

17 • DBGRQ • GND 18

19 • DGBACK • GND 20

Another interesting place:

Smartcard

•USB encryption keys generation
•Session numbers/keys storage
•Different counters
•Certificates storage

•A whole system DoS

Other “features”:)

Powering and testing

FW uploading

• + USB connection
• + Java-based software

(easy to decompile and modify)

Firmware dumping (CMDv5)

•Main CPU: STM STR710FZ2T6
•Image base: 0x60000000

Two other CPUs:
•CollectorBooter: STR730FZ2T6
•DispenseBooter: STR730FZ2T6

Firmware analysis (CMDv5)

1. Read 5 LE-dwords after a MOD name (header-dwords, HD)
2. key[n] = KEY1[n] ^ HD[n]; // where n: 0..3
3. data[0] = KEY0[0] ^ HD[0] ^ HD[1];

data[1] = KEY0[1] ^ HD[2] ^ HD[3];

Encryption algo – XTEA mod.
DELTA: 0xF27716BA. Rounds: 32

- KEY0 and KEY1 are unknown yet!

Init:

Firmware analysis (CMDv5)

Decryption algo

XTEA (Python):

Our python
implementation

Firmware analysis (CMDv5)

Decryption result:
•Sequential APLib archives (have AP32 header)
•Ends with 0xFFFFFFFFs

•Unpacked firmware

Firmware analysis (CMDv5)

KEY0 and KEY1:
•Hardcoded! (base offset: 0x64000000)
•Ability to use OLD or ZEROed keys!

Firmware analysis (CMDv5)

Self-signing

(bad practice)

• 30-bit tokens count

(int length + 1)

• 30-bit tokens count

(int length)

• sign = RSA(e=7,

SHA1(data[0x360:]))
• modulus = RSA.key.N

•0x160 – sign
•0x260 – modulus
•0x360 - data

Firmware analysis (CMDv5)

Firmware uploading (DFU)
•Uses special DFU device:
• - DFU_PID = PID | 0x8000
• - bInterfaceClass = 0xFF
• - bInterfaceSubClass = 1

Normal state

DFU-mode state

Firmware analysis (CMDv5)

Firmware encryption tricks

Firmware header

• Unpacked FW size

• Firmware part name

• 5 header-dwords

• 0xDEAD0000 | (KEY0_OFFSET / 8)

Old keys
checking

code

Firmware analysis (CMDv5)

KEY0 and KEY1:
•Hardcoded! (base offset: 0x64000000)
•Ability to use OLD or ZEROed keys!

Firmware analysis (summary)

What we know:

1. Self-signed firmware (public key is in the same binary!)
2. APLib packed sequential blocks
3. Modified XTEA encryption algorithm (different DELTA)
4. XTEA encryption keys can be bypassed (VULN IS HERE!)
5. DFU protocol (uploading firmware into a dispenser)

USB Communications (steps)

1.Basekey initialization
2.New session keys generation
3.Session counters synchronizing

USB Communications (Basekey init)

To generate a new Basekey you need:

1. ROOT-certificate
2. Intermediate CA-certificate
3. Terminal Encryption certificate (issued by CA)
4. Terminal Authentication certificate (issued by CA)

We don’t have any of them… :(
(and don’t need them)

USB Communications (session key)

How to generate a new session key (PC):
1. BK = Read the Basekey from the Keystorage (its key in TPM)
2. SESSION_KEY_XXX = SHA1(BK) + session_counter + direction

We have four directions:
PC_FW_OUT, PC_FW_IN, FW_PC_OUT, FW_PC_IN

SmartCard also checks for the same
counter usage + makes its increment

How to generate a new session key (Firmware):
1. SESSION_KEY_XXX = SmartCard(session_counter + direction)

USB Communications (session sync)

To synchronize session counters you need:
1. ChannelID (server=2, client=1)
2. Basekey length
3. Basekey Check Value (KCV) (first 3 bytes of SHA1(Basekey)
4. Session counters for USB client/server IN/OUT

Basekey can be read from
the Keystorage file too

Response has the same parameters
so we can sync session counters

Abusing session counters (DoS)

Steps to reproduce:
1. session_counter = 0xFFFFFFFF
2. SESSION_KEY_XXX = SmartCard(session_counter + direction)

SmartCard generates a new key,
but no new key can be generated after!

USB comms analysis (summary)

What we know:
1. TPM usage (awesome!)
2. Keystorage usage (awesome!)
3. Four encryption keys directions (awesome!)
4. SmartCard usage (awesome!)
5. SmartCard “feature”

(can disable a whole ATM, but won’t allow to take the money!)

USB Communications (withdrawal)

Steps to perform a withdrawal:
1. Patch FW to skip asking SmartCard for a session key

(use some dummy array)
2. Patch Java code to use the same dummy array as the key
3. Patch Java code to skip checks

for cashIn and cashOut configs
4. Sync session counters (PC = SmarCard)
5. Write a new cassettes config to the dispenser’s EEPROM
6. Call prepareCashOut()
7. Call cashOut(cassetteNum=3, banknotesNum=5)
8. Call shutter.open()
9. Take the money!
10.Close the shutter

Vulnerabilities disclosure timeline

1. Q3 2018 – vendor has been informed about vulnerabilities
2. Q4 2018 – official PoC tests were performed,

vulnerabilities have been proven
3. Q4 2018 – CVE IDs were registered
4. Q1 2021 – vendor informed us that vulnerabilities

were fixed in 2019
5. Q3 2021 – <Russian Mitre> IDs:

- BDU:2021-04967
- BDU:2021-04968

Thank

you

Contacts:
vkononovich@ptsecurity.com

mailto:vkononovich@ptsecurity.com

