
11

Divide & Conquer revisited:

FI as a SW EXP primitive

Federico Menarini

Rafael Boix Carpi



22

Outline

Intro

Example case study: STM32WB55 chip

Requirements for a SW exploit

FI as a SW attack primitive

FI: yearly reminder/disclaimer & quick recap

What does FI do from a SW point of view?

Problems/limitations of complex SW or FI attacks

Divide and conquer: stretching the power of ‘simple’ attacks

Wrap-up, mitigations & conclusions



3

Intro to case study



44

Case study: intro

ST STM32WB55: low cost IOT chip with a ton of features

Dual core

• ARM Cortex M4 @ 64MHz + Cortex M0 @ 32 MHz

• M4: General purpose core (non-secure domain)

• M0: Communication + security (secure domain)

Supports Bluetooth and Zigbee

Security settings stored in “option bytes” in flash



55

Research goals

Our research goal targeted the typical assets in the following scenario:

“If we start from a fully locked chip, can we get anything from it?”

Assets we planned to target:

• Secure core (M0 core)

• Runtime control? Obtain debug privileges?

• Arbitrary code execution?

• Dump secret AES crypto keys / secure area / wireless firm / …?

• Non-secure core (M4 core)

• Dump non-secure flash contents?

• Bypass debug lockout?



66

To understand the target, we need the firmware and datasheets

Understand 

target

Identify 

vulnerability

Exploit 

vulnerability

Usual process for breaking embedded systems



77

Datasheet study – flash security

From the chip datasheet:

RDP2 is final – no downgrade possible

RDP1 can be reprogrammed to RDP0 after erasing the flash

Debug access to M0 always blocked, even with RDP 0

RDP level Value Behavior

RDP 0 0xAA Full access

RDP 1 Not 0xAA or 0xCC Can read part of RAM + registers, but no FLASH access or single 

stepping

RDP 2 0xCC No access - debug locked (irreversible state)



88

Datasheet study – flash security

SRAM and Flash partitioned between M0 and M4

• M0 can always access everything

• But M4 cannot access M0 resources

Secure core firmware / code execution only reserved to ST

Images are encrypted and signed

• Programmed through a loader running in M4+M0



99

Target overview – secure core (M0)

• Security can be configured through secure option bytes

– Locked down in production devices

– Secure option bytes only writable by the M0

• Most code does wireless comms (according to datasheet)

• M0 core also in charge of security, e.g. secure key storage

– Keys cannot be deleted/modified

– Command to load keyslot directly into AES engine

• M4 core can then use the engine without seeing the keys



1010

Dumping the boot ROM

• According to datasheet, Boot ROM mapped at 0x1FFF0000

• Performed simple attack to read it out:

– Connect JTAG and read memory at 0x1FFF0000 



1111

Quick analysis of the boot ROM

• Behavior seems to match public documents

• No hidden functionality

• No obvious logical flaws

• No check for RDP values

– Probably checked in hardware at boot

BootROM looks simple yet quite robust…



1212

Analyzing the non-secure core

• Cannot access secure domain via non-secure peripherals

• Non-secure core (M4) can interact with secure domain via a 

mailbox system

• Wireless stack is executed by the secure core

– But we don’t have its firmware

– ST firmware updates are encrypted

• No RE possible

• No debug access to the secure core memory

• Security domain HW seems properly isolated



1313

Let’s see our options for exploiting something…

Understand 

target

Identify 

vulnerability

Exploit 

vulnerability

Usual process for breaking embedded systems



1414

If we want to exploit SW vulns, we need…

1. A way to obtain runtime control

 But we don’t want to do blind exploitation (M0 core is hidden to us)

2. A predictable place to put code

 But M4 core cannot modify the M0 memory and the chip will be locked

3. A place in memory that is executable

 Flash memory is executable

 But only shared interface is a mailbox to send instructions to the M0



1515

Possible SW attack path for different assets

Fully locked chip: no code in user area via debug access

“Fuzzing, ROP and blind exploits have no secrets for me”

- Typical approach: find a vulnerability in the wireless stack

- Jedi master level: blind exploitation of the vulnerability (if it is exploitable)

- Longer way:

- Leak info through some vuln

- Partially RE the wireless stack behavior and find more vulns

- Craft an exploit chain (where do we put the exploit? ROP?)

- Trigger the whole process and pray it works

- PROFIT!?



1616

Possible FI attack path for different assets

“Glitch-your-way-through-everything!”

1 - Glitch the RDP level in order to unlock chip & get debug access

• Load some payload into the user memory & pointers to the payload

2 - Glitch a pointer to the payload into the PC of the secure core M0

• Glitching values into PC  classic FI attack on ARM 32bit – check out: 
https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf

PROFIT!?

https://www.riscure.com/uploads/2017/09/Controlling-PC-on-ARM-using-Fault-Injection.pdf


17

Fault Injection as a 
Software attack 
primitive



18

Glitching 101

A glitch is an event that leads to data/flow corruption

o Usually caused by a physical hardware fault

o Can be even triggered only by software under certain 

conditions (e.g. PlunderVolt)

Glitching == “physical fuzzing”

img src: https://i.redd.it/vb2y4mav2to11.jpg



1919

What does FI do from a SW point of view

FI can corrupt almost any data value; some examples:

• Any register in the CPU (Program Counter is a critical one)

• Configuration registers (e.g. copy of OTP configuration bytes)

• In registers, during data transfers, in volatile or non-volatile memory…

FI corrupts the hardware itself

• Things that are unreachable by software can be corrupted by FI

• “Magical behavior” can happen: instruction corruption, skipping, …

• Given the proper conditions: FI attacks introduce new SW vulns!



2020

Issues with the two different approaches

“Glitch-your-way-through-everything!”

Approach requires two glitches

We are implicitly assuming that the hardware is glitchable: what if it isn’t?
• What if e.g. we cannot glitch stuff into the M0 core?

“Fuzzing, ROP and blind exploits have no secrets for me”

We cannot load code from the user area due to the chip lock status

Attack path only works if there are exploitable vulnerabilities

Vulnerability discovery & exploitation is going to be far from trivial

An OTA SW update of the wireless stack will break the SW exploit



2121

What we know about glitching and SW exp…

Performing a single glitch is usually easy…

• But multiple glitches is typically difficult

• Especially with non-time-constant software running between glitches

Exploiting several vulnerabilities is difficult…

• But a single, simple exploit is often easy

We painted a non-trivial scenario for SW exploitation:

What if we could make our life easier by changing the scenario…

… by using a single glitch…

…by using a simple exploit…

…and combining both?



2222



2323

Divide and conquer: 

revisited

If we can divide a complex FI 

or SW attack chain into a 

simple FI attack that enables a 

simpler SW exploiting 

scenario, we will more easily 

conquer our goal

Ask yourself as an 

attacker:

which SW exploitation 

challenge can we 

alter/modify/remove 

with a glitch?



2424

First things first: same old disclaimer again

We will see combined FI attacks on a specific MCU model…

…but FI is a problem for 

general purpose chips

from all vendors

FYI: Some vendors have

FI-resistant chip series



2525

This message is not new: already in 2015…

*against SCA&FI attacks

*

Presented in CCCcamp 2015 (HW attacks: hacking chips on the (very) cheap) 
https://media.ccc.de/v/camp2015-6711-
hardware_attacks_hacking_chips_on_the_very_cheap

https://media.ccc.de/v/camp2015-6711-hardware_attacks_hacking_chips_on_the_very_cheap


2626

Presented in hardwear.io 2018 (FI on automotive diagnosis protocols) 
https://www.youtube.com/watch?v=10Dag6ee2d8

Mentioned several times here also…

https://www.youtube.com/watch?v=10Dag6ee2d8


2727

Divide and conquer 

attack



2828

Let’s glitch the rules with a combined attack

Most annoying SW exploit restriction: cannot load code or debug 

Step 1: glitch the chip to unlock it

Let’s spam a single glitch and hope it unlocks the chip

Step 2: load code from non-secure domain by exploiting the secure/non-

secure interface

We can load exploit code into the non-secure domain if step 1 succeeds

Let’s try to abuse the secure/non-secure interface



29

Step 1: let’s try unlocking the chip with FI

• Lockdown level setting in configuration bytes register
• 0xAA: unlocked

• 0xCC: fully locked (JTAG disabled, irreversible)

• Anything else: partial locked

• FI plan:
• Corrupting configuration bytes  partial lock  enables JTAG again

1. Force reload of configuration bytes on open sample: look for interesting SCA 
pattern

2. Glitch option bytes register while being reloaded

3. If previous attempt works: repeat glitch at boot time (after powerup)



30

FI profiling

Powerup reset: spike

Warm reset: no spike

• Readout of option bytes is only done after powerup according to datasheet

• The same pattern is found if you trigger a reload by software

This is our FI point

!



31

FI attack: attempt 1

VCC glitching, nominal VCC

• Removed decoupling capacitors

• Several FI profiling rounds

• Single glitch up to (-4V, 1000ns)

• The glitch is very visible in the power consumption traces

Result: No glitching at all due to internal filtering by on-die power supply

Developer recommendation: use the SMPSVoltage FI attacks harder!



32

FI attack: attempt 2

Attempt 2: VCC glitching with very low VCC supply voltage

• Result: Glitches

Attempt 3: VCC glitching with hardware modification to bypass on-die PSU

• Result: More glitches

Attempt 4: EMFI with no target modification (just to try other FI method)

• Result: More glitches



33

FI: attack results & conclusion

Permanent downgrade possible from full lockdown to partial 
lock/unlocked with FI by glitching RDP to 0xFF

FI JTAG unlock: common MCU problem for chip vendors. However…

• RDP can then be set to lvl 0 – non-secure flash will be erased

• The secure core domain is still intact, but we can now run arbitrary 
code from non-secure FLASH because chip is unlocked  time for 
our SW exploit

*except if the chip is 

against FI attackers 

img from 
STM32WB55 
datasheet



34

Step 2- Abusing secure domain interfaces

• Message passing between secure and non-secure domains is handled 
through a mailbox system (IPCC)

• Shared buffer in SRAM, offset in option bytes

• Messages contain a structure with pointers to certain fields
• Secure core will parse input messages and process them (wireless commands, 

flash update, …)

• Secure core will write the answer to memory pointed by those pointers

• Flash update firmware always present  focus on it



35

Secure core – interface details

img from 
STM32WB55 
documentation



36

Secure core – interface details

img from STM32WB55 documentation



37

Secure core – interface details

• ROM code interfaces with the secure core
• Used for secure core FW upgrade

• Tables must have been already set up…

• Just read them out



38

Secure core – interface details



39

Secure core – possible vulnerability

• Two pointers to be dereferenced

• Is it done right?
• Both pointers should point to shared SRAM

• The check should be performed both when reading and writing



40

Secure core – interface attack plan

• Try a (sort of) TOCTOU attack

• Set up a correct table by looking at what the BootROM does

• Send a command

• Wait some time, change the table to make it point to other memory 
locations

• Have the secure core write to its internal memory

• ???

• Profit



41

Secure core – testing attack hypothesis

• Tried the approach: it seems to work!

• What do we want to overwrite?
• And with what?

• Possible sets of answers seems very limited:
• Fixed header + ack of command ID + 1 status byte (always 5 bytes in total)

• We still don’t have access to the M0 FW

• Only flash is executable

• Very difficult primitive to use blindly



42

Secure core – attack revisited

• Couldn’t come up with anything smart for actual attack

• Let’s try to be simple: just point the response buffer onto the secure 
option bytes
• Secure option bytes are memory mapped

• Hopefully they will be overwritten with whatever the M0 writes

• Response copied in the buffer byte wise

• Odd behavior when writing to registers

• Maybe we are lucky…



43

SECURE OPTION BYTES

img from 
STM32WB55 
documentation



44

SECURE OPTION BYTES

img from 
STM32WB55 
documentation



45

Running the attack



46

Secure core – full attack

• We can make the secure core overwrite its configuration bytes
• Namely, its start address

• After running the exploit, the start address points to non-secure flash

• Reprogram the start address with a small shellcode that disables all 
security

• We can read secure flash!
• Both from non-secure core and with JTAG



47

Secure core – attack results

• Read out (everything)

• We have JTAG access to the Secure Core
• M0 core has access to everything in the system



48

Divide and conquer: full FI + SW exp attack

• Get a device fully locked

• Use FI to downgrade security to ‘partial lockdown’
• Optional: read out SRAM contents at runtime via JTAG in ‘partial lockdown’

• Erase the flash & go to unlocked mode & load a SW exploit in non-
secure memory

• Run a SW exploit from non-secure domain in order to unprotect 
secure core domain

• Read out (everything)



49

DEMO TIME

Demo of the attack



50

DEMO TIME

Demo of the attack



51

DEMO SW EXPLOIT: SECURE CORE DEBUG ENABLED



52

Wrap-up, 
mitigations and 
conclusions



53

Wrap-up

With the divide & conquer approach, we managed to:

• Glitch the non-secure domain readout protection mechanism

• Find & exploit a software vulnerability in the interface

• Achieve a full compromise of the security domain

There is a thing we didn’t get due to our ‘simple’ approach:

• Glitching & downgrading RDP level triggers a non-secure FLASH erase
• In other words: our ‘simple’ attack approach deletes the user area

• Not so relevant for our purpose, but may delete interesting assets

• It may be possible to avoid the downgrade step, but we didn’t explore it



54

Mitigations

How to mitigate combined attacks: put obstacles everywhere!

Specifically in the presented case study:

• as a developer: include FI attackers in your threat model

• use the STM32WB55 SMPS whenever possible – makes VFI harder

• add secrets not only in the secure area, but also in the user area
• this would make the non-secure FLASH erasure a problem for attackers

• update the firmware for patching software vulnerabilities
• The IPCC mailbox vuln has been patched in STM32CubeWB MCU FW ≥v1.10.1

• Link to latest version: https://github.com/STMicroelectronics/STM32CubeWB

https://github.com/STMicroelectronics/STM32CubeWB


55

Coordinated disclosure

We followed a Coordinated Disclosure procedure with ST PSIRT
• Sept 20, 2020: Vulnerability report + PoC exploit shared with ST PSIRT

• Oct 1, 2020: ST PSIRT reports they are investigating the issue

• Oct 15, 2020: ST PSIRT confirms the vulnerability and informs Riscure that it will be 
patched in the next FW release and gives an estimated timeline

• Nov 10, 2020: ST PSIRT updates Riscure on the patch release date (W04 ’21)

• Feb 5, 2021: Riscure checks with ST PSIRT if released FW update contains patch

• Feb 8, 2021: ST PSIRT confirms that FW version 1.10.1 contains the patch

Kudos to ST PSIRT for addressing the issue in a professional manner



5656

Conclusions (attacker view)

Dividing a complex FI or SW exploitation scenario into a 

combined FI+SW attack can be a viable attack path

A simple FI attack can change the SW exploit scenario

• FI resilience is hard

• Check if MCU threat model considers FI attacks

• If no FI protection: divide & conquer!

Combined FI/SW attacks can be simple yet very powerful

• More and more often found in infosec news



5757

Conclusions (developer view)

FI is still getting more and more popular

Add obstacles for attackers in every step:

• Include FI attackers in your threat model

• Patch firmwares: this mitigates the impact of FI 

vulnerabilities

• Use all security properties/features of your platform

• Distribute secrets/dependencies so that an attacker 

only succeeds with a full system compromise



5858

Riscure B.V. 
Frontier Building, Delftechpark 49 

2628 XJ Delft 

The Netherlands 

Phone: +31 15 251 40 90 

inforequest@riscure.com

Riscure North America 
550 Kearny St., Suite 330

San Francisco, CA 94108 USA

Phone: +1 650 646 99 79 

inforequest@riscure.com 

Riscure China
Room 2030-31, No. 989, Changle Road, Shanghai 200031

China

Phone: +86 21 5117 5435

inforcn@riscure.com

driving your security forward

Further questions/information:

Federico Menarini

Principal Security Analyst (@ffmenarini, federico@riscure.com)

Rafael Boix Carpi

Principal Security Specialist (@rafabxc , rafael@riscure.com)

www.riscure.com

mailto:inforequest@riscure.com
mailto:inforequest@riscure.com
mailto:inforcn@riscure.com
http://www.riscure.com/

