
Automated vulnerability
hunting in SMM using Brick

Assaf Carlsbad, Itai Liba

@assaf_carlsbad 1

carlsbad@sentinelone.com

@liba2k

itail@sentinelone.com

Agenda

2

A whirlwind tour of SMM01

Automating bug hunting in
SMM03

Summary of SMM bug classes
and attacks02

A brief introduction to SMM

● System Management Mode

● A dedicated CPU mode for
firmware handling low-level
system-wide functions
○ Power management
○ Legacy device emulation
○ Proprietary OEM code

3

Venturing into the x86’s System Management Mode

https://slideplayer.com/slide/4804061/

A brief introduction to SMM

● Originally introduced by the i386
CPU

● Over the years, OEMs started
shifting more and more
functionality into it

4

● SMM runs from its own address
space called SMRAM

● A region of physical memory where
SMM code and data lives

● Can be queried by reading a bunch
of registers called SMRRs

● Can be closed & locked by
hardware to isolate SMM from the
“outside world”

5

SMRAM

● Once closed, only code running in SMM can read/write SMRAM contents

● Attempts to read/write it from outside SMM (OS/hypervisor/DMA) would
fail

6

SMRAM

● SMM is entered in response
to an SMI

● Preempt (almost) all other
code running on the CPU

● Execution jumps to an SMI
handler
○ Firmware can install

additional sub-handlers at
boot time

System Management Interrupts

7

Taxonomy of SMIs

8

SMIs

Software SMIs Hardware SMIs

Legacy SW SMIsComm Buffer
SMIs

Our focal point
for this talk

Invoking SMIs (1/9)
● In UEFI, handlers are registered via Smst->SmiHandlerRegister

● Each handler is identified by a GUID

9

Invoking SMIs (2/9)

10

Retrieves the
EFI_SMM_COMMUNICATION_PROTOCOL

Returns a continuous chunk of physical
memory

Invoking SMIs (3/9)

11

The specific argument for the SMI are
placed after the header

The CommBuffer is prefixed with the
GUID identifying the handler and the size
of data that follows

Invoking SMIs (4/9)

12

The Communicate() method of the
protocol is called, which gets resolved to
SmmCommunicationCommunicate()

Invoking SMIs (5/9)

13

Places the CommBuffer and its
respective size in their designated places
inside the gSmmCorePrivate structure

Generates a SW SMI using the
EFI_SMM_CONTROL_PROTOCOL

Invoking SMIs (6/9)

14

Writes to I/O port 0xB3 and 0xB2

Invoking SMIs (7/9)

15

Invoking SMIs (8/9)

16

The CommBuffer and its respective size
are fetched from gSmmCorePrivate

The SMI handler with the GUID found in
the header is invoked

Invoking SMIs (9/9)

17

Handler can access the CommBuffer
and CommBufferSize. Note that
CommBuffer points outside of SMRAM!

Attacks against SMM

18

● SMM code is highly privileged

● You can think of SMM code as “ring -2"
○ More powerful than the kernel (ring 0) and

the hypervisor (ring -1)

● SMM “superpowers”
○ Invisible to all the layers above it (SMRAM)
○ Full access to all physical memory
○ Full access to all MSRs
○ Can write the BIOS region on the SPI flash

19

SMM privileges

Attack scenario
● Goal: elevate privileges to ring -2

● Assumption: ring 0 privileges
○ We can freely issue SW SMIs

● Vector: confused deputy attack
against SMI handlers
○ The privileged SMI handler will be

“tricked” to corrupt/modify SMRAM
contents

21

Full attack flow

Hunt for SMM
bugs

Corrupt SMRAM

Hijack SMM code
execution

Payload

22

Full attack flow

Hunt for SMM
bugs

Corrupt SMRAM

Hijack SMM code
execution

Payload

SMM backdoor
https://github.com/Cr4sh/SmmBackdoor

https://github.com/Cr4sh/SmmBackdoor

23

Full attack flow

Hunt for SMM
bugs

Corrupt SMRAM

Hijack SMM code
execution

Payload

Re-flash the BIOS
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%2
0x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Fl
ash%20Protection%20Mechanisms.pptx

https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pptx
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pptx
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pptx

24

Full attack flow

Hunt for SMM
bugs

Corrupt SMRAM

Hijack SMM code
execution

Payload

Infect the hypervisor and guest VMs
http://c7zero.info/stuff/AttackingHypervisorsViaFirmware_bhusa1
5_dc23.pdf

http://c7zero.info/stuff/AttackingHypervisorsViaFirmware_bhusa15_dc23.pdf
http://c7zero.info/stuff/AttackingHypervisorsViaFirmware_bhusa15_dc23.pdf

25

Full attack flow

Corrupt SMRAM

Hijack SMM code
execution

Payload

We’ll only focus on the first
phase in this talk!

Hunt for SMM
bugs

Hunt for SMM
bugs

● A lot of attacker controlled parameters

Attack surface

26

GUID of the handler Address of the
CommBuffer

Contents of the
CommBuffer

Restrictions
● To protect SMRAM, the Comm Buffer

cannot overlap with SMRAM

● Otherwise, any handler that writes results to
the CommBuffer will also modify SMRAM
contents

2727

Comm
Buffer

Phys Mem

SMRAM

Restrictions

28

Comm
Buffer

Phys Mem

SMRAM

● Checked using
SmmIsBufferOuts
ideSmmValid()

● However, some
poorly written SMI
handler allows us to
bypass this
restriction

Actual size of the CommBuffer is not
checked

Assumes the CommBuffer is at least 8
bytes long!

29

#1: Not validating CommBufferSize

3030

SMI
Handler

Phys Mem

SMRAM

SmmEP

3131

CommBuffer

Attacker places Communication Buffer at

SMRAM
_BASE

 - 1, with CommB
uffer

Size
= 1

SMI
Handler

SMRAM - 1

Phys Mem

SMRAM

SmmEP

3232

CommBuffer

SMI
Handler

Attacker tri
ggers the vulnerable SMI

Phys Mem

SMRAM - 1

SmmEP

SMRAM

3333

CommBuffer

SMI
HandlerSmmEntryPoint

checks that
CommBuffer does
not overlap with
SMRAM

Phys Mem

SMRAM

SMRAM - 1

SmmEP

3434

CommBuffer

SMI
Handler

Check is successful,
execute SMI handler

Phys Mem

SMRAM

SMRAM - 1

SmmEP

3535

CommBuffer

SMI
Handler

Handler blindly writes a QWORD
to the CommBuffer, corrupting
the lower portion of SMRAM

Phys Mem

SMRAM

SMRAM - 1

SmmEP

❌

✅

Handlers should explicitly check that

CommBufferSize matches the

expected size

36

37

First byte is the operation code.
Valid values are { 0, 2, 3 }

default clause writes a status
variable to the memory location pointed
to by CommBuffer + 1

#2: Unsanitized nested pointers

Phys Mem

SMI
Handler

38

Exploiting nested pointer issues

SMRAM

Attacker writes a specially crafted
Communication Buffer

Phys Mem

SMI
Handler

Comm
Buffer

OpCode: ?

39

Exploiting nested pointer issues

SMRAM

Address: ?

Phys Mem

SMI
Handler

Attacker triggers the vulnerable SMI

40

Exploiting nested pointer issues

SMRAM

Comm
Buffer

OpCode: ?

Address: ?

Phys Mem

SMI
Handler

Handler inspects opcode field

41

Exploiting nested pointer issues

SMRAM

Comm
Buffer

OpCode: ?

Address: ?

Phys Mem

SMI
Handler

An invalid opcode values will
force the handler to fallback
into the default case

42

Exploiting nested pointer issues

SMRAM

Comm
Buffer

OpCode: 4

Address: ?

Phys Mem

SMI
Handler

Address is also attacker
controlled, so we make it
point to SMRAM

43

Exploiting nested pointer issues

SMRAM

Comm
Buffer

OpCode: 4

Address

❌

✅

Handlers are expected to call

SmmIsBufferOutsideSmmValid()

to make sure client supplied pointers

do not overlap with SMRAM

44

45

#3: Double-fetches from the CommBuffer
CommBuffer->field_18 (not in SMRAM) is
copied to a local variable in SMRAM

Handler checks that the copied pointer does
not overlap with SMRAM

Memory is copied using the original pointer
from the CommBuffer

SMRAM

Phys Mem

SMI
Handler

46

Exploiting TOCTOU issues

SMRAM

Phys Mem

SMI
Handler

47

Exploiting TOCTOU issues

…
field_18

...

Attacker writes the CommBuffer.
field_18 points outside of SMRAM

SMRAM

Phys Mem

SMI
Handler

48

Exploiting TOCTOU issues

…
field_18

...

Attacker triggers the vulnerable SMI

SMRAM

Phys Mem

SMI
Handler

49

Exploiting TOCTOU issues

…
field_18

...

smm_field_18

CommBuffer->field_18
is copied into a local
variable in SMRAM

SMRAM

Phys Mem

SMI
Handler

50

Exploiting TOCTOU issues

…
field_18

...

Both copies point to
the same address

smm_field_18

SMRAM

Phys Mem

SMI
Handler

51

Exploiting TOCTOU issues

…
field_18

...

SmmIsBufferOutsideSmmValid
is called to make sure
smm_field_18 does not point to
SMRAM

smm_field_18

Phys Mem

SMI
Handler

52

Exploiting TOCTOU issues

SMRAM

smm_field_18

While one CPU executes the SMI handler, the other
CPUs wait for it to finish in SMM (rendezvous)

…
field_18

...

Phys Mem

SMI
Handler

53

Exploiting TOCTOU issues

…
field_18

...

SMRAM

While the SMI handler executes, a DMA attack
modifies CommBuffer->field_18 to point to
SMRAM

smm_field_18

Phys Mem

SMI
Handler

54

Exploiting TOCTOU issues

…
field_18

...

SMRAM

Handler calls
CopyMem(CommBuffer->field_18, …)

smm_field_18

❌

✅
55

Double fetches from the CommBuffer

are dangerous!

Handlers are expected to copy

members of interest into SMRAM and

use only the copy henceforth

Using Brick to automatically hunt SMM bugs

56

General
● Brick is an automated, static analysis tool for hunting SMM

vulnerabilities

● Based on IDA
○ Rich ecosystem
○ Higher level analysis via the Hex-Rays decompiler

● Demo time!

57

Phases

58

Summary phaseHarvest phase Analysis phase

Harvest phase

59

● Extracts all the SMM binaries from the input file

Based on UEFIExtract,
uefi-firmware-parser library,
etc.

Directory, SPI dump,
capsule update, FV,
BIOS image etc.

Directory with
SMM

binaries

Harvest SMM modules

Summary phaseHarvest phase Analysis phase

Analysis phase

60

● Each SMM image is opened in IDA
● Runs a bunch of modules against each SMM binary:

○ Processing modules
○ Detection modules
○ Informational modules

● Uses idahunt to parallelize the process

Directory
with SMM
binaries

Processing

Detection

Informational

Up to N concurrent IDA instances

Summary phaseHarvest phase Analysis phase

Brick modules

61

● Implemented as IDAPython scripts
● Written on top of the Bip framework

Preprocessor

efiXplorer

Postprocessor

Nested
pointers

SMRAM
overlap

CSEG

TOCTOU

SetVar info
leak

Legacy
protocols

Reference
code

Informational modulesDetection modulesProcessing modules

Presented in this
talk
Not presented in
this talk

Summary phaseHarvest phase Analysis phase

Detection heuristic - unsanitized nested pointers

62

Detection heuristic - unsanitized nested pointers

63

Go over all the SMI
handlers installed by the
image

Detection heuristic - unsanitized nested pointers

64

Is the CommBuffer
referenced at all?

Detection heuristic - unsanitized nested pointers

65

Recursively scan the AST
of the handler, looking for
nodes that correspond to
function calls

Detection heuristic - unsanitized nested pointers

66

Does the node represent a call to
SmmIsBufferOutsideSmmValid?

Improving detection
● Reconstructing the

layout of the
CommBuffer allows us
to determine whether or
not it holds nested
pointers

● Can be done via
HexRaysCodeXplorer
https://github.com/REhin
ts/HexRaysCodeXplorer

67

Summary phaseHarvest phase Analysis phase

https://github.com/REhints/HexRaysCodeXplorer
https://github.com/REhints/HexRaysCodeXplorer

Improved heuristic - unsanitized nested pointers

68

Taking CommBuffer reconstruction
into account

A word of false { positives, negatives }

69

● Simple heuristics have many advantages, but also imply that false
positives and false negatives will occur from time to time

● False positives (misleading alerts)
● Brick is just a helper tool, so manual examination of the results is a must
● A small degree of false positives is acceptable

● False negatives (misses)
○ Main use case is scanning the entire firmware image
○ Finding even a subset of all vulnerabilities might be good enough to compromise

SMM

Summary phaseHarvest phase Analysis phase

Results (so far)
● Two CVEs from Lenovo

○ CVE-2021-3599: A potential vulnerability in the SMI callback function used to access
flash device in some ThinkPad models may allow an attacker with local access and
elevated privileges to execute arbitrary code.

○ CVE-2021-3786: A potential vulnerability in the SMI callback function used in CSME
configuration could be used to leak out data out of the SMRAM range.

● About a dozen of other vulnerabilities in various stages of the
disclosure process
○ Affecting all major vendors and OEMs
○ Some affect the reference code shared between multiple vendors

70

Future work
● Add more detection modules

● Improve reliability

● Reduce running time

● You can contribute too!
○ https://github.com/Sentinel-One/brick

71

https://github.com/Sentinel-One/brick

Thank you for your attention!

72

