Hardware attacks against SM4
1n practice

hardwear.io
NETHERLANDS 2022

Who are we ?

Sylvain PELISSIER

Security researcher
Applied Cryptography
Hardware attacks
CTF player

Y @Pelissier_S

Nicolas OBERLI

Embedded systems evaluation
Hardware attacks

BlackAlps co-organizer
Hydrabus

Y @baldanos

Once upon a time

e Discussed with a friend about a new chip

e More interested in security features

USB3.0/2.0
Host/Device PHY

SerDes Controller

UART*4
SPI*2

Timer*3
PWMX*4+PWM*3

e
CH569/5

16+32/64/96KB
SRAM

512KB Flash

Ethernet MAC
RGMII/RMII

DVP

HSPI

SD/EMMC Controller

Encrvot

Al /SM4

J

SM4 ?

e Wikipedia: *“ block cipher used in the Chinese National Standard [...]”
e Never heard about it

e Started to look for implementation and known attacks

e Some papers exist, but no published tools

Me vs math

e Not very good at crypto
o Base algorithm is fine, thanks to C implementations

2, EH AAs = AXy (B AXs @ AX @‘-‘3"’\’32 = AX3» iu
M FREEBE—NMEFFD ¢, ENENFHUER ;.
El]ﬁ Aa;.z2 =esz.

2.6. B SEBRE AB,FREZE—1TEFFN,
. E{ﬁ.ﬁy‘jj-gﬂjg Ab,.:;‘.:-
o Literally ;) 23 L ERES

e Those attack papers are all Chinese to me

ACs; = (Abo.32 Aby .32 Abs.32 Abs 32) D
(CADy.30 ADy 32 ADy 55 Aby 50) <<<Z2) (P
CCADG .52 Dby 52 Dby 55 Dby 30 <10)@P
e Need a crypto guy ! (D32 A Ao A
(CAby.50 Aby .32 Aby 35 Abs 35
=AX;s.
PR LERPHVEBREE.FIIEB

SM4 block cipher

Block cipher by Standardization Administration of the PRC (GB/T32907-2016).
Draft IETF available in English [1].

Key size and a block size of 128 bits.

Encryption or decryption of one block of data is composed of 32 rounds.

The algorithm works on 32-bits word.

Used in Arm v8.4-A and RISC-V and many hardware accelerators.

Mandatory for some product deployments.

SM4 key schedule

An invertible key schedule is used to produce the 36 round keys (words) RK.
Computed from the secret key and constants CK and FK.

The initial four RKs are the secret key XORed with constant FKs.

Possibility to identify round keys in memory with their relations like for AES.

https://en.wikipedia.org/wiki/Key_schedule

SM4 key schedule round
RK; CK; RKi41 RKi4o RKiy3

S
&

M
4

RI<i+1 RI<i+2 RKi+3 RKi+4

SM4 round

e SM4 encryption or decryption rounds work on a 128-bit state.
e For encryption, the first state is the plaintext:

(X07X17X2°X3) — (POJ Pla P27 P3)

e The only difference between encryption and decryption is the order of the round keys.

SM4 round
X; RK; Xin X2 Xiy3

/
N
/\

Xi+1 Xi+2 Xi+3 Xi+4

10

T function

ks ko ki ko
k3
L/
N
L/
£
N

-

N

11

T function

e [is a linear transformation with 32-bit input and 32-bit output. Used for diffusion.

e S are S-Box with 8-bit input and 8-bit output. As AES Sbox, based on inverse and
affine transformations.

e Final output of the cipher is reversed:

(007 Cla 027 03) — R(X327 X337 X347 X35) — <X357 X347 X337 XSQ)

12

https://en.wikipedia.org/wiki/Affine_transformation

SM4 constants

m A~ -s ~/software/rules/crypto/crypto signatures.
SM4_FK sm4

©x54990:%$c0: C6 BA Bl A3 50 33 AA 56 97 91 7D 67 DC 22 70 B2
SM4_CK sm4

0x54910:%$c0: 15 OE 07 00 31 2A 23 1C 4D 46 3F 38 69 62 5B 54

13

SM4 round key search

[OX00000000]> /ca sm4

Searching 1 byte in [@0x0-0x1ff]
nits ol

0x000000ff hit@_0 f9862111612b6641db28e44757dbe32c

14

SM4 hardware attacks

e 'Two possible approaches

o Side channel analysis (SCA)
o Differential Fault Analysis (DFA)

e Two people, two approaches, we have a plan !

e First step: software implementation
e Second step: hardware implementation

15

Side-Channel analysis

Side channel analysis

e Recover secret key based on some kind of leakage

o Power consumption / EM emissions / timing / ...

e Multiple papers/tools for various cryptographic algorithms available
o AES is widely attacked using side-channel analysis
e Some papers about SM4 side-channel analysis

0 Mostly in chinese :(
o No available tool

17

Traces

Need traces to perform analysis

Software implementation of SM4 in C

Target : ESP32-C3

Acquisition method : LISN
o One set of traces, two talks : Opttmtzationt laziness

Random plaintext

50’000 averaged traces

I'MNOT,LAZY

I'M JUST, SAVING Mv ‘

ENERGY, FﬂR WHEN I
REALLY/NEED]IT

18

Power

Example traces

250 A

200 -

150 ~

100 A

Round 1

“ Round 2
% Round 3
= Round 4
@ Round 32

0

20000 40000 60000 80000 100000
Time

19

SCA library

e Instead of creating a new library, use an existing one
e SCAred by eShard

o Clean / open-source codebase
o Good documentation
o In Python

e Started by adding a SM4 implementation
o Using same inputs/outputs as the AES module
o Create helper functions
m Inverse transforms

20

Selection functions

e Functions used to modelize the hypothesis

e Based on input data and key hypothesis, generate a dataset containing hypothetical
values

e Used to perform the actual CPA attack

21

Sbox selection function

e Sbox is performed per byte
o Good for CPA

e On first round, Sbox output is dependant on plaintext and round key

o plaintext is known, round key is our guess

ks ky ki ko

e Helper function takes 4 input words and outputs 4 bytes < s b
e Result is XORed with our guess o s &b
e (Calculate Sbox output and search for correlation g ; X

€2 NP

€3 S <D

Correlation coefficient value

cpa_attack = scared.CPAAttack(

Sbox selection function results O e o et e etk i ey P)

model=scared.HammingWeight(),
discriminant=scared.maxabs
)

round_container = scared.Container(ths, frame=slice(10000,11600))

. LOOking great ! cpa_attack.run(round container)
e Only one guess arises during computation L T
. plt.title('CPA trace - RK byte '+str(KEY_BYTE), fontsize=20)
o And is the correct one ! plt.xlabel('Time', fontsize=12)

plt.ylabel('Correlation coefficient value', fontsize=12)
plt.plot(abs(cpa_attack.results[:, KEY_BYTE, :].T))
plt.show()
cpa_round_key = np.argmax(cpa_attack.scores, axis=0)
k1l = int(cpa_round_key.astype(np.uint8).tobytes()[::-1]1.hex(), 16)
print(f"K1 = {hex(k1)}")

CPA trace - RK byte 3

0.08 -
0.06 -
0.04
0.02
0.00 4
N
A Z

0 20000 40000 60000 80000
Time

Recovering round keys

e CPA allows to recover one round key
e Key schedule is invertible, but we need 4 consecutive round keys

e Since we’ve found one word, we can compute the next round value
e Apply the same attack on next round to get the next round key
e Repeat two more times to get 4 round keys

@scared.attack selection function
def second sbox(plaintext, guesses):
res = np.empty((plaintext.shape[@], len(guesses), 4), dtype='uint8')
data = sm4.round forward(sm4.arr to words(plaintext), k1)
for i, guess in enumerate(guesses):
res[:, i, :] = sm4.sbox(np.bitwise xor(sm4.smd4lt(data), guess))
return res

round container = scared.Container(ths, frame=slice(13000,14000)) 24

Recover the master key

e From 4 consecutive round keys, revert the algorithm to retrieve RK[0-3]
e Apply FK constant to retrieve the key

1 = np.array([kl, k2, k3, k4], dtype=np.uint32)

#Last round key is the fourth. Counting from 3 to 0 to recover RK[0-3]
for i in range(3, -1, -1):
1 = sm4.inv key schedule(l, i)
Apply FK to retrieve the master key
MK = sm4.master key(1)
for i in range(4):
print(f"MK{i} = ox{MK[i]:08x}")

MKO = 0x01234567
MK1 = 0x89abcdef
MK2 = 0x12345678
MK3 = 0x9abcdefo

25

[Last round SBOX

Last round SBOX can be retrieved from the ciphertext as well.

Knowing ciphertext, possible to retrieve the sbox values and guess last round key

Don’t forget that ciphertext words are shifted !

@scared.attack selection function

def last sbox(ciphertext, guesses):
res = np.empty((ciphertext.shape[@], len(guesses), 4), dtype='uint8')
for i, gquess in enumerate(guesses):

res[:, 1, :] = smd4.sbox(np.bitwise xor(sm4.inv smalt(

np.flip(smd4.arr to words(ciphertext), axis=1)), guess))
return res

round container = scared.Container(ths, frame=slice(102000,104000))

26

Demo time !

27

Differential Fault Analysis

Fault attacks on SM4

e First fault attack was introduced in 2006 by Zhang and Wu (paper in Chinese
language) [1].

e All further fault attacks are based on this one.

e One byte fault in a word before the last round.

e No tools available from the paper but attack was later implemented by Guojun Tang:
o https://github.com/guojuntang/sm4 dfa

29

https://github.com/guojuntang/sm4_dfa

First fault attack on SM4

Xi RKi Xi+1 Xi+2 Xi+3
/ i

@9 T €=

X; X Xiva X,

1+2

30

First fault attack on SM4

The faulted output are easily distinguishable:

for c in faults:
print(color_diff(c, ref))

2db4b4990000000000000000000000<5
20d2d674200000000000000000000°100
£4000000000000000000000000000000
7373acdT00000T000000000000000000
0f0Tctclo00039000000000000000000

31

First fault attack on SM4

For the round input we have a fault ,, 9 = x;.9 @ « in the second byte of X, »:
S(Tit3PBTiro®Ti1Bk) & S(xu3PxioPriy1Dk) = S(x) & S(x®)
For the output we have:
L (XM B Xi+4) — (0, 5,0,0)
So we are searching x for given known « and 3 such that:
Sz) ® S(z®a) = f

32

First fault attack on SM4

We can create a static table 7T such that
Tlo][8] ={z: S(z) ® S(z ® a) = 5}

We collect faulted ciphertexts.
We compute « and S for each faulted ciphertext.

The entry T]a][] give us the list of possible round key byte candidates.

Statistically for each faulted ciphertext we would obtain 2 candidates.
We need 8 different faults to the full round key.

33

First fault attack on SM4

e After a round key is recovered we can decrypt the last round and apply again the
attack.

e With 4 round keys, we can invert the key schedule and recover the full secret key.

e We need on average 32 faults in total.

34

Test

e First Test on simulated faults.
e Test ARM binary using a C implementation of SM4
e Used our fault simulation tool based on radare2

© Fault model : instruction skip

e Fixed key, fixed plaintext

o Sequentially skip one instruction and print result R 2 ‘V”

°_2J042*‘0

ESIL SIDE-CHANNEL SIMULATION

Gl1tchozOr 3000

https://www.balda.ch/publications/r2con20.pdf

Fault simulation output

simulated_faults

Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

adds r3, r7, r4 @ 0x8222(count=17680)
ldr r3, [r7, 4] @ 0x8226(count=17682)
1sls r3, r3, 0x18 @ 0x8228(count=17683)
strb r2, [r3, 3] @ 0x822e(count=17686)
ldrb r3, [r3] @ 0x8232(count=17688)
movs r@, r3 @ 0x8234(count=17689)

bl sym.sm4Sbox @ 0x8236(count=17690)
push {r7, 1r} @ 0x81bc(count=17691)

sub sp, 0x10 @ 0x8lbe(count=17692)

movs r2, r@ @ 0x81c2(count=17694)

adds r3, r7, 7 @ 0x81c4(count=17695)
strb r2, [r3] @ 0x81c6(count=17696)

ldr r3, [pc, 0x20] @ 0x81c8(count=17697)
adds r3, r7, 7 @ 0x8lcc(count=17699)
ldr r2, [r7, 0xc] @ 0x81do(count=17701)
movs ril, Oxb @ 0x81d4(count=17703)

adds r3, r7, rl @ 0x81d6(count=17704)

923a700b4a033411275beb17ce749e3e
888152334a033411275beb17ce749e3e
54fe2d904a033411275beb17ce749e3e
b061b2eb4a033411275bebl7ce749e3e
5f88f8ed4a033411275beb17ce749e3e
fefc2d384a033411275bebl17ce749e3e
9a4affeata033411275bebl7ce749e3e
e4b8c3d8bfb97223fdc128a55687fe8a
fdc128a55687fe8a32374dc40101e3fe
fefc2d384a033411275beb17ce749e3e
87b0180d4a033411275bebl17ce749e3e
87b0180d4a033411275bebl17ce749e3e
b242dfca4a033411275bebl17ce749e3e
253832274a033411275beb17ce749e3e
b840d7c24a033411275beb17ce749e3e
bl1be20354a033411275beb17ce749e3e
87b0180d4a033411275bebl17ce749e3e

Demo time !

37

Extended fault attack on SM4

First DFA is not applicable in some cases.
Attack proposed in 2007 by Li and Gu [2].
Faults happening one round earlier, corput all the bytes the following word.

We can apply the first fault attack in parallel and recover all the 4 bytes of the
round key.
e [t transforms a byte fault model into a word fault model.

38

Extended fault attack on SM4

X

1

éa(ﬁ

39

Extended fault attack on SM4

A

WHAT SHOULD WE IIII-IIE}(T?

577
]i

e We can fault a round before and recover two round keys
only with two faults.
e Only four faults allow to recover the secret key completely. ®

WE NEED TO'GO DEEPER ..

A

Extended fault attack on SM4

The faulted output are still distinguishable:

for c in faults:
print(color_diff(c, ref))

afe2c4f6cfa2c99e5555015400000000
716b04fada5a63b72ea7892e00170000
6Ta33644a18e8270000000200000000
e9ba5693010404050000001100000000
8925521706d10c04fed43bdfe00000000

Does not work for some faulted words.

41

Going further

e Attack proposed by Li et al. in 2010 [3]

e Attack one round further and bruteforce DFA until :
the correct round keys are found. N 0 s “ nE I r

® A single fault is necessary.

-

e Useful when few faults are available.

for c in faults:
21 print(color_diff(c, ref))

67ealld4ae838bT59924e71cla527c762
29bd7d124098b16014cc@cc7t1729263
0cd773fed6508709ef255c4b2e01elcf WENEEDTO GO
5da97ee4b8d595989d82a197edeb0beb
93e8334fdba662ca5469d7ac9e2fc25c¢c ’ nEEPEH

Still some room for improvement

Xi RK;

-

Xin Xipo Xi3

RKi+1

es{

NOT'SURE IF
\

A
\

USING RIGHT
- MEME OR NOT

Fault attack implementation

Combine two first DFA attacks and some improvements.

Available as a single Python package:

pip install phoenixSM4

Inverse the round once the round key is found and continue the attack.
Included in a tool similar to phoenixAES from Side-Channel Marvels.

44

Demo time !

45

Hardware implementation

46

Target

e In the meantime, Benjamin released HydraUSB3

e Based on CH569w from WCH
o RISC-V microcontroller with hardware SM4 P

e Time to test on real hardware

% () PO —
dydra =

—UsSB3 |

47

Firmware

e Simple C firmware

(@)

o O O O

Read 16 bytes of plaintext
Raise GP1O

Perform SM4

Reset GPIO

Write 16 bytes of ciphertext

read_buf(plaintext,
bsp_uled_on();

ECDC_SingleRegister((uint32 t

bsp_uled_off();
phex(ciphertext,
printf("\r\n");

16) ;

(uint32_t
16);

x)plaintext,
*x)ciphertext);

48

Side-Channel analysis

Setup

® Tried shunt and LISN

(@)

(@)

Correlation on plaintext, ciphertext but nothing in between
T-test does not show anything interesting

e Maybe my setup is not fast enough

e Work in progress

TIME TO,TAKE OUT

3
L
AW T

/
THE BIG GUNSII!

50

Fault injection

51

Setup

e Same board and firmware as with side channel

e EM fault injection with NewAE’s ChipShouter

o 400V / 150ns pulse
o Stock clockwise coil

52

Results

~1400 faults generated (283 unique ciphertexts)
Running the DFA tool recovers the key

Round key 32 found:

FE1866AB

Round key 31 found:

5D7F2319

Round key 30 found:

AFC4C1D1

Round key 29 found:

4D2037C3

[2875595006, 421756765, 3519136943, 3275169869]
Master Key found:
0123456789abcdef123456789abcdef0

53

Summary

e SM4 is another block cipher
e More and more deployed, thanks to standardization

e We provide multiple open-source tools to perform attacks on SM4

o In-memory key schedule finder included in radare?2
o Power analysis library to be included into SCAred
o Differential fault analysis tool PhoenixSM4 to be included in the Side channel Marvels

e To see fewer talks like this one, it’s easy: Publish your code !

OPEN'SOURCE

54

Thank you !

References

e [1] Ronald Henry Tse, Wong Wai Kit and Markku-Juhani O. Saarinen, The SM4 Blockcipher Algorithm And Its Modes Of
Operations, Internet Engineering Task Force, 2018

e [2] Zhang Lei and Wu Wen-Ling, Differential Fault Analysis on SMS4, Chinese Journal of Computers, 2006.

e [3] Wei Li and Dawu Gu, An Improved Method of Differential Fault Analysis on the SMS4 Cryptosystem, The First International
Symposium on Data, Privacy, and E-Commerce (ISDPE 2007), 2007,

56

