
Securing the Unseen:
Vulnerability Research in Confidential Computing

Hardwear.io USA 2023

Cfir Cohen Josh Eads

● Confidential Computing
○ Background & Threat Model

● AMD SEV-SNP Security Review
○ Methods, Tools & Findings

● Intel TDX Security Review
○ Methods, Tools & Findings

● Summary

Agenda

Reviews Background

● Motivation: Auditor role critical in building trust
○ See “sealed computation framework” paper

● Whitebox security audit
○ Close collaboration with CPU vendors
○ Access to hardware, design docs and source code

● Impactful
○ >30 CVEs & confirmed issues

● Transparent
○ 2022: AMD SNP security report
○ 2023: Intel TDX security report

● Acknowledgements
○ James Forshaw, Jann Horn, Mark Brand, Felix Wilhelm, Erdem Aktas
○ Awesome AMD & Intel engineers

2021

SNP Review Kickoff

2022

2023

SNP Review Published

TDX Review Kickoff

TDX Review Published

https://arxiv.org/pdf/1906.07841.pdf
https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/AMD_GPZ-Technical_Report_FINAL_05_2022.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf

Confidential
Computing

Confidential, Protected, Sealed Computing

● Hardware-based trusted execution
○ Remote attestation: code identity w/ quotes rooted in hardware.
○ Strong isolation: from hypervisor, peripheral devices, colocated tenants.

Initial state security
guarantees

Runtime security
guarantees

AMD SEV-SNP “Strengthening VM Isolation” whitepaper

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

Confidential, Protected, Sealed Computing

● Hardware-based trusted execution
○ Remote attestation: code identity w/ quotes rooted in hardware.
○ Strong isolation: from hypervisor, peripheral devices, colocated tenants.

● Paradigm shift
○ Give control back to customer: platform TCB is auditable, verifiable and therefore trusted.
○ Protection of data in use: policy centered around authentic code & secure processing env.

Confidential, Protected, Sealed Computing

● Hardware-based trusted execution
○ Remote attestation: code identity w/ quotes rooted in hardware.
○ Strong isolation: from hypervisor, peripheral devices, colocated tenants.

● Paradigm shift
○ Give control back to customer: platform TCB is auditable, verifiable and therefore trusted.
○ Protection of data in use: policy centered around authentic code & secure processing env.

● Innovation trigger
○ Usable: VM based compute model supports lift-and-shift
○ Available: support across CPU vendors and Cloud providers
○ Enabler: data clean room and Multi-Party Compute solutions

● Deprivileged host OS:
○ Trusted for resource management, not resource access

● Adversarial host system has many capabilities:
○ Bad system configurations
○ Large API surface
○ DMA from peripheral devices
○ Control over scheduling
○ Memory access oracles

● Physical access attacks not in-scope
○ No DRAM interposers
○ No voltage glitching, etc.

Threat Model: Powerful Adversary In A Target Rich Env

Architectural limitations

Host firmware is untrusted

AMD SEV-SNP
Security Review

AMD SEV-SNP Components

● AMD Secure Processor (ASP)
○ Isolated execution environment; Exposes mailbox interface
○ Hosts security sensitive components e.g SEV firmware

● SEV firmware
○ Manages guest state, nested page tables, page ownership table (RMP)
○ Programs in-line memory encryption keys
○ Signs attestations

● CPU uCode
○ Checks page ownership on every store

● IOMMU
○ Checks page ownership during IOVA translations

● Memory Controller
○ Inline AES memory encryption for PAs with C-bit set

Ownership & Access Checks:
Integrity guarantees

Encryption: Confidentiality
guarantees

Research Methodologies & Tools

● There is a systematic way to find high
quality bugs.

● Things that worked well for us:
○ “Invariant analysis”
○ Layered crypto reviews
○ Emphasis on performance - security

tradeoffs
○ Emphasis on security checks
○ Interaction between components

● Wycheproof for crypto tests
● PCIe screamer for hardware tests

Layered Crypto Review

Implementation Correctness, random selection bias, secret dep ops, etc.
Attackers target the implementation, not the math.

Algorithms Choice of building blocks: encryption, digest, signing algo and schemes.
Weak algorithms (MD5), weak modes (ECB), weak schemes
(unauthenticated ciphertext).

Protocols How building blocks assembled to form a secure channel.
Looking for secrecy, authenticity, freshness, strong identity binding.

Persistent storage key reuse

● Authenticated encryption scheme: AES-CTR, HMAC
● Fixed IV leads to “two time pad”

Persistent storage key reuse

● Authenticated encryption scheme: AES-CTR, HMAC
● Fixed IV leads to “two time pad”
● Bypasses fix for 2019 key recover vul.

Somewhere here is the encrypted
private key. If you recover it using
“invalid curve” bug from 2019, you can
XOR recover the storage key stream,
then recover the private key of a
patched system.

https://seclists.org/fulldisclosure/2019/Jun/46

IOMMU TLB not flushed on SNP-INIT

● Invariant: “Page ownership information is
coherent across components”

● IOMMU caches RMP entries =>
IOTLB should be flushed on RMP updates.

● Firmware updates RMP on init, but failed to
flush IOTLB.

DRAM

RMP

Page Ownership
Data Structure

ASP

SEV Firmware

X86 Core

IOMMU

TLB Caches RMP

IOTLB Caches RMP

IOMMU TLB not flushed on SNP-INIT

● DMA aggressor (screamer) poisons IOTLB
● Stale IOTLB entries lead to unchecked write

PCI Screamer:

Intel TDX 1.0
Security Review

VMX in a Nutshell

VMM

TDX in a Nutshell

TDX in a Nutshell - Supporting Cast

MCHECK/ACTM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

TDX in a Nutshell - Trust Boundary

MCHECK/ACTM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

TDX in a Nutshell - Attack Vectors

MCHECK/ACTM BIOS

BIOS
SMM
OS

VMM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

TDX in a Nutshell - Vulnerabilities Discovered

MCHECK/ACTM BIOS

BIOS
SMM
OS

VMM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

Security Review Strategy

A comprehensive review of TDX is a large task, we need to focus our resources.

● Review the high level architecture and changes from legacy VMX
● Develop an understanding of the different attack vectors available
● Apply a variety of techniques to ensure adequate coverage:

○ Manual source code review
○ Test against the hardware implementation - we relied on simulation as HW wasn’t ready
○ Lessons the SNP review: security invariant analysis, wycheproof to scan for known crypto bugs

Read the full report for more details and results: Project Zero: Release of a Technical
Report into Intel Trust Domain Extensions

https://googleprojectzero.blogspot.com/2023/04/technical-report-into-intel-tdx.html
https://googleprojectzero.blogspot.com/2023/04/technical-report-into-intel-tdx.html

TDX Initialization

Trust rooted in silicon-fused public keys which verify MCHECK and ACTM module.

● Ensure the foundational system configuration is secure before continuing

From there, a verified chain of software leads to the TDX module.

● Any post-verification compromise along this chain leads to a full system compromise

This chain and metadata are measured and attested by a key provisioned to the SGX enclave.

TDX in a Nutshell - NP-SEAMLDR

MCHECK/ACTM BIOS

BIOS
SMM
OS

VMM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

Nonpersistent (NP)-SEAMLDR

● Part of the TDX boot flow; first stage loaded by the OS or VMM
○ Only input related to the CPU state to restore afterward

● Bundled as an Authenticated Code Module (ACM)
○ Legacy tech; code modules signed by Intel and used for system initialization

● All ACMs run with the same, elevated privileges. These privileges include:
○ Write access to the register used to measure the TDX boot chain
○ Write access to the SEAMRR protected memory range (TDX module, etc.)

● Compromise of NP-SEAMLDR breaks the foundation for the rest of TDX

Overall, it sounds like a fairly small attack surface…

Searching for attack vectors…

● GETSEC[ENTERACCS] transitions from the host OS execution environment into
the ACM (NP-SEAMLDR)

○ CPU validates RSA signature of the ACM, transitions to 32b mode, and initializes registers
○ ACMs were designed to be called by 32b BIOS code, so NP-SEAMLDR has new entry/exit paths

to help transition between 64b host and 32b ACM

● ACMs run in a constrained environment which should negate some attacks
○ SMT is disabled, executes entirely from the cache, interrupts & exceptions are disabled

How exactly are interrupts and exceptions disabled?

AcmEntryPoint PROC NEAR

 sidt fword ptr ds:[ebp + stackStart + 4*6]

 ; Make sure that Null IDTR is actually zero

 mov dword ptr ds:[ebp + stackStart + 4], 0

 mov dword ptr ds:[ebp + stackStart + 8], 0

 lidt fword ptr ds:[ebp + stackStart + 4] ; Load NULL IDTR

 lidt FWORD PTR [rcx].SEAMLDR_COM64_DATA.NewIDTR ; Load attacker IDTR

 lgdt FWORD PTR [rcx].SEAMLDR_COM64_DATA.OriginalGdtr

DoExitAC:

 ; uCode restores the RIP, CR3, and error code from these GPRs

 mov rbx, QWORD PTR [rcx].SEAMLDR_COM64_DATA.ResumeRip

 mov r8, QWORD PTR [rcx].SEAMLDR_COM64_DATA.OriginalCR3

 mov r9, QWORD PTR [rcx].SEAMLDR_COM64_DATA.RetVal

 ; <code truncated for slides>

 GETSEC[EXITAC] ; drop privileges and return to host x86 code

Interrupts disabled!

Interrupts re-enabled!

NP-SEAMLDR Code

*(UINT16 *)SeamldrCom64Data.OriginalGdtr = (UINT16)(OriginalECX >> 16);

Exit Path Interrupt Hijacking Vulnerability

● There is a critical window where interrupts are enabled on ACM entry and exit
● Additionally, the attacker controls the value of IDTR on the exit path
● All of the exit path instructions are exception-safe… except one!

 lidt FWORD PTR [rcx].SEAMLDR_COM64_DATA.NewIDTR ; Load attacker IDTR

 lgdt FWORD PTR [rcx].SEAMLDR_COM64_DATA.OriginalGdtr

DoExitAC:

 ; uCode restores the RIP, CR3, and error code from these GPRs

 mov rbx, QWORD PTR [rcx].SEAMLDR_COM64_DATA.ResumeRip

 mov r8, QWORD PTR [rcx].SEAMLDR_COM64_DATA.OriginalCR3

 mov r9, QWORD PTR [rcx].SEAMLDR_COM64_DATA.RetVal

 ; <code truncated for slides>

 GETSEC[EXITAC] ; drop privileges and return to host x86 code

Interrupts re-enabled!

Exploitation

● Since we control the IDTR we can redirect the #GP to any address
● However, we’re still running from cache and can’t access RAM. We need to find a

place for our IDT and payload.
● The ACM image is loaded into cache on entry, but its contents are verified

through an RSA signature…
● Except for the scratch space!

○ It turns out there’s ~800 unverified bytes, of which a subset are used for RSA scratch.
○ Since we didn’t have hardware at the time, we proved out the exploit using Intel’s Simics simulator

which models ACM and NP-SEAMLDR behavior.

Sequence of Events

1. Insert fake IDT into ACM binary blob scratch space
a. Scratch space is not covered by RSA signature

2. OS/VMM loads modified ACM
a. Pass in invalid arguments for CPU state restoration
b. IDTR => fake IDT offset in ACM binary
c. GDTR => non-canonical address

3. ACM runs as usual
4. ACM exit path is reached

a. Interrupts are enabled
b. LGDT triggers a #GP

NP-SEAMLDR
(cache address space)

… 0x1000

#GP <fault handler>

… 0x2000

…
LIDT
LGDT
…

…
<x86 payload>
…

TDX in a Nutshell - Vulnerabilities Discovered

MCHECK/ACTM BIOS

BIOS
SMM
OS

VMM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

TDX Module

This persistent module is responsible for TD management throughout their lifecycle. It runs in
elevated SEAM mode, compromise of this code leads to compromise of TDX on the system.

Two APIs:

● 9 APIs available directly to a TD (new TDCALL instruction)
● 44 APIs available to the host (new SEAMCALL instruction)

Review strategy:

● Large focus on manual code review throughout the team
● Additionally used wycheproof for crypto library (Intel IPP) validation, weggli for variant analysis,

and Frama-C for limited static analysis

4 bugs discovered and fixed, details in the full report

https://github.com/google/wycheproof
https://github.com/intel/ipp-crypto
https://github.com/weggli-rs/weggli
https://github.com/Frama-C

TDX in a Nutshell - Vulnerabilities Discovered

MCHECK/ACTM BIOS

BIOS
SMM
OS

VMM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

MSR Attack Vector

A malicious host, SMM, or BIOS has a large selection of
control registers which may weaken system security.

We focused on per-core and per-platform MSRs:

● The TDX module can’t prevent their modification
● Affects TDX module and TDs during runtime

Overall, there is a privilege inversion with MSRs and
TDX. The privileged TDX code can’t trap or limit MSR
values set by the untrusted host.

TDX Private Memory Protections

MK-TME encrypts and protects the TDX private memory contents

● Plaintext in cache, ciphertext + integrity-check in DRAM
● AES encryption, 128-bit blocks

Two modes CPU uses to verify private memory is private

● Cryptographic (TDX-CI): 28-bit HMAC stored beside the content in RAM
● Logical (TDX-LI): 1-bit indicator alternative
● Mode selection based on DDR5 capacity characteristics

Breaking the integrity check allows an attacker with DRAM control to create false
private memory.

What about Rowhammer?

Breaking the integrity check allows an attacker with DRAM control to create false
private memory.

Targeting options:

1. Ciphertext - essentially randomize 128 bits; invalidate integrity check
2. TDX-CI HMAC - need to brute force 28-bit HMAC but only 1 shot
3. TDX-LI - only need to flip a single bit

ciphertext TDX-CI HMAC

128 bits 28 bits

ciphertext TDX-LI

128 bits 1 bit

1

3

2

Does ECC mitigate this attack on TDX-LI?

ECC significantly raises the bar for successful silent data corruption.

However, ECC must first be configured by the BIOS via the Uncore registers

Who verifies that ECC is enabled before TDX-LI is allowed?

It turns out nobody, in the pre-release version! A malicious BIOS with Rowhammer
primitives could create false private memory by disabling ECC.

● Intel fixed the bug before public release by securely validating ECC settings.

ciphertext TDX-LI

128 bits 1 bit

ECC

8 bits

TDX in a Nutshell - Vulnerabilities Discovered

MCHECK/ACTM BIOS

BIOS
SMM
OS

VMM

NP-SEAMLDR

P-SEAMLDR

MK-TMEMSRs Uncore Memory ControllerCPU uCode

Side Channel Attack Vectors

We focused on three categories of SCAs:

● Transient execution-based
○ TDX software uses best practices re: HW/SW mitigations
○ Manually identified critical points insert speculation barriers and flush branch predictors

● Traditional timing-based
○ Hardened crypto library used (additionally verified with Wycheproof test suite)
○ RAPL energy reporting feature limits power analysis granularity

● Access oracles
○ Host-visible effects that disclose sensitive TD behavior

Side Channels - Access Oracles

Witnessing TD memory access patterns can reveal sensitive info depending on the workload

Confidential compute users should utilize constant-access operations for sensitive workloads.

Oracle Primitive Side Effects Address Resolution

TDH.MEM.RANGE.BLOCK Guest fault
(recoverable)

Page-level

Poisoning TD cache lines Guest termination Cacheline-level

MONITOR/MWAIT
(up to ~40 in parallel)

None Cacheline-level

TDX Security Review Summary

All discovered software bugs were remediated by Intel before the public launch!

● Vulnerability impact ranged from minor to full TDX compromise

Source code and many specifications are available online

● Spec & source: Intel® Trust Domain Extensions (Intel® TDX)
● Intel bug bounty: Intel® Bug Bounty Program Terms

However, TDX is only going to get more complex - there is more work to be done!

● TDX 1.5 (live migration) and 2.0 (TEE-IO) specifications published

Check the full report for more details on what we didn’t cover today.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://googleprojectzero.blogspot.com/2023/04/technical-report-into-intel-tdx.html

Conclusions

The State of Confidential Compute Vulnerability Research

CC de-privileges the host OS/VMM - significantly raising the cost of host=>VM attacks.

We encourage hardware vendors to embrace collaboration with security researchers

● Users must trust the CPU security claims before staking their secrets on it.
● Open sourcing confidential compute firmware will build more confidence in the

robustness of the design and implementation.

Side channel attacks take an elevated importance in systems touted as completely opaque
- even from the most sophisticated attackers.

Due to the complexity and amount of new technology, we’ll likely see a long tail of issues.

Confidential VMs may become ubiquitous as new hardware saturates the server market.

