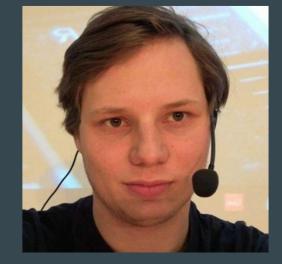
Under the hood of a CPU


Reverse Engineering Intel's P6 Microcode

hardwear.io The Netherlands 2020

Peter Bosch @peterbjornx me@pbx.sh

About me

- Computer Science/Physics student at Leiden University
- Past work includes
 - \circ \quad Writing an emulator for the Intel ME
 - 36C3 Talk: Intel Management Engine Deep Dive
 - CVE-2019-11098 (Intel Boot Guard SPI bus TOCTOU vulnerability) (with @qrs)
 - HITB2019 Talk: Now You See It: TOCTOU Attacks Against Secure Boot and BootGuard

Twitter: @peterbjornx

E-mail: me@pbx.sh

x86 != native instruction set

- MacroInstructions are converted to microinstructions (uops)
- Simple instructions map 1-to-1: ADD EAX, REG becomes EAX:= ADD EAX, REG
- More complicated instructions yield multiple uops
- Even more complicated instructions and other architectural details invoke a full microprogram

intel

APPENDIX C PENTIUM® PRO PROCESSOR INSTRUCTION TO

			1	· · ·					
	ST		0	comp ex 1		VERR m16		comp ex	
	STOSB/W/D m8/16/32,m8/16/32			3		ERR rm18		comp ex	
	STR	tm18	comp ex			'ERW m16		comp ex	
STR rm18		trm16	4		VERW rm16			comp ex	
	SUB	SUB AL, mm8		1 WB NVD			comp ex		
	SUB eAX, mm16/32			1	WRMSR			comp ex	
	SUB m16/32, mm16/32			4 XADD m16/32,r16/32			comp ex		
	SUB m16/32,r16/32			4 XADD m8,r8			comp ex		
		AAS		1 2		ADD r16/32,m16/32		1	
		ADC AL, mm8				ADD r8, mm8	1	1	
		ADC eAX, mm16/32 ADC m16/32, mm16/32		2		ADD r8,m8 ADD r8,m8		2	
								1	
		ADC m16/32,r16/32		4		ADD rm1 8/32,r18/32		1	
		ADC m8, mm8		4		ADD rm8,r8		1	

Getting to these microprograms

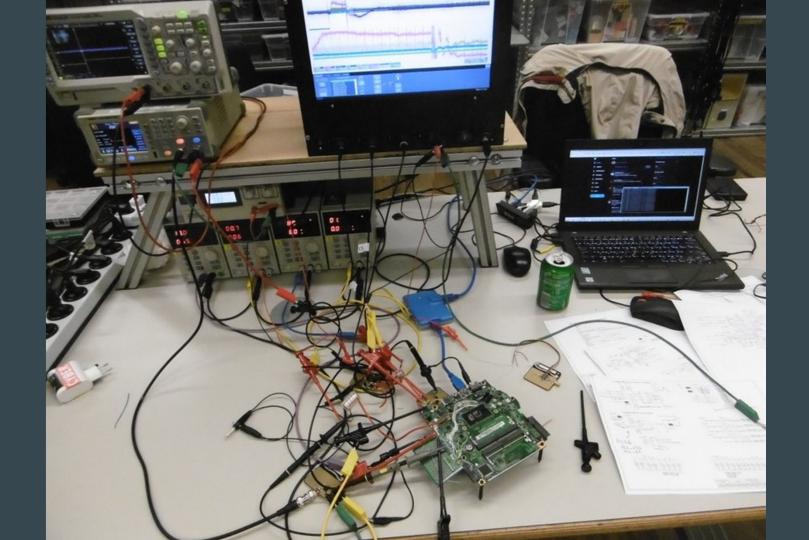
• Download an update and extract it?

Each block is encoded differently, and the majority of the 2,000 bytes are not used as configuration program and SRAM micro-operation contents themselves are much smaller.^[1] Final determination and validation of whether an update can be applied to a processor is performed during decryption via the processor.^[16] Each microcode update is specific to a particular CPU revision, and is designed to be rejected by CPUs with a different stepping level. Microcode updates are encrypted to prevent tampering and to enable validation.^[20]

With the Pentium there are two layers of encryption and the precise details explicitly *not* documented by Intel, instead being only known to less than ten employees.^[21]

Each block is encoded differently, and the majority of the 2,000 bytes are not used as configuration program and SRAM micro-operation contents themselves are much smaller.^[1] Final determination and validation of whether an update can be applied to a processor is performed during decryption via the processor.^[16] Each microcode update is specific to a particular CPU revision, and is designed to be rejected by CPUs with a different stepping level. Microcode updates are encrypted to prevent tampering and to enable validation.^[20]

With the Pentium there are two layers of encryption and the precise details explicitly *not* documented by Intel, instead being only known to less than ten employees.^[21]


Getting access to these microprograms

- Download an update and extract it?
- Extract from running system?

LDAT Ports

```
K_tdef deviceType="SNB" tables="StateDefs">
  <_tdefDevice steppings="A0,A1,B0,B2,C0,C1,D0,D1,D2,J0,J1,P0,Q0">
    <StateDefs>
      <StateDef>
        <State _name="ms_ram_by_rf" _description="The MS patch RAM">
          <Dimension _name="set" _instances="127:0">
            <Field name="RF 9(31:0)" />
            <Field name="RF 8(31:0)" />
            <Field name="RF 7(31:0)" />
            <Field __name="RF_6(31:0)" />
            <Field name="RF 5(31:0)" />
            <Field name="RF 4(31:0)" />
            <Field name="RF 3(31:0)" />
            <Field name="RF 2(31:0)" />
            <Field name="RF 1(31:0)" />
            <Field name="RF 0(31:0)" />
          </Dimension>
        </State>
        <Operation Type="Read" Scope="set">
          <Procedure Name="Readms ram by rf">
            <Param Name="set" />
            <LDatSetup UnitSel="0x3d3" />
```

More info: https://pbx.sh/ldat/

Finally, the casket is opened: we (+@h0t_max and @_Dmit) have extracted Intel x86 microcode! One more Intel "top secret" information gets revealed... 🔨

github.com/chip-red-pill/...

Atom Goldmont!

- C X nd Prompt - python	
- X MPrompt - python ************************************	

12:52 PM · May 19, 2020 · Twitter Web Client

https://github.com/chip-red-pill/glm-ucode

Getting access to these microprograms

- Download an update and extract it?
- Extract from running system?
- Extract from mask ROM?

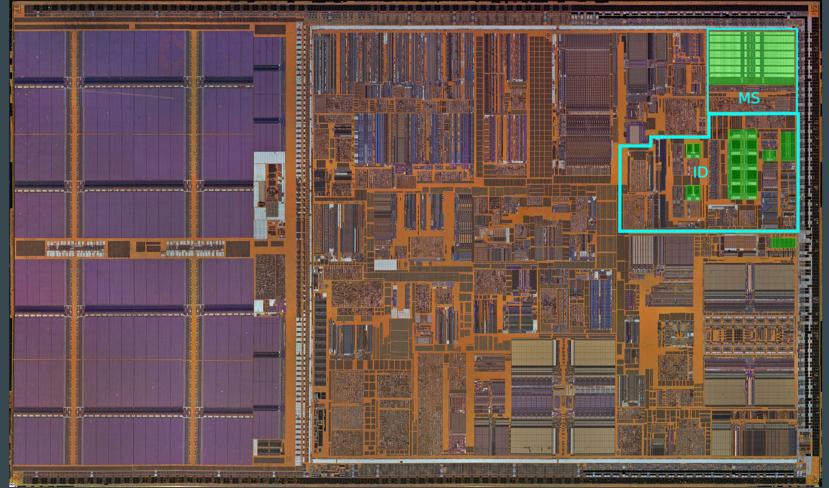
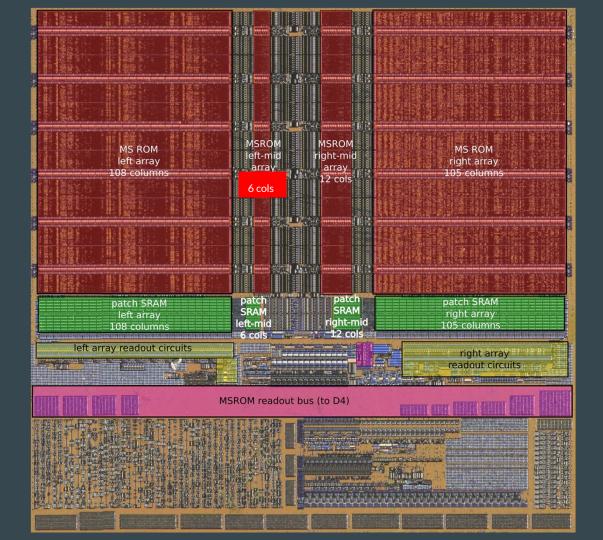
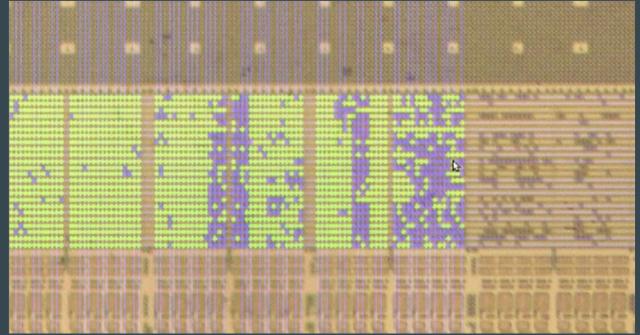
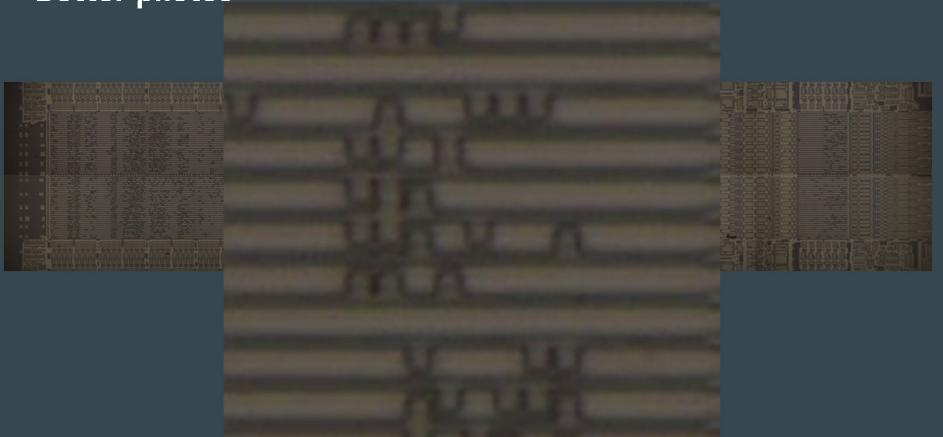
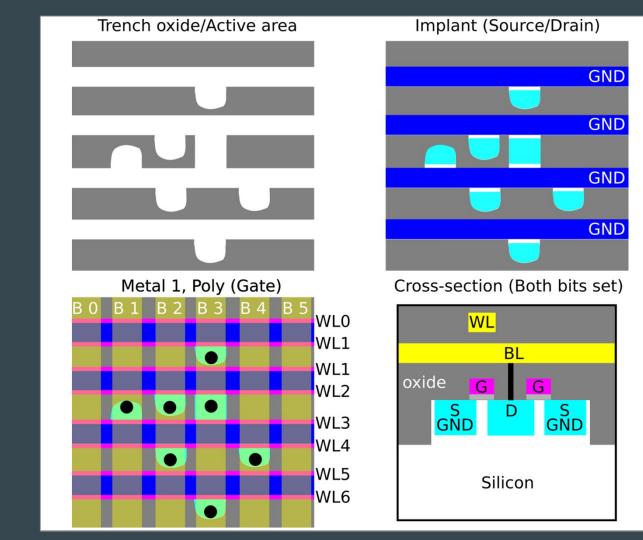




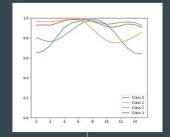
Image by Martijn Boer, https://www.flickr.com/photos/sic66/42522440724/in/album-72157689303100124/

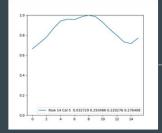



First attempt

https://github.com/AdamLaurie/rompar

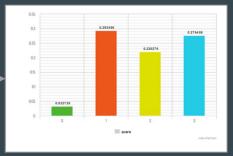
Better photos

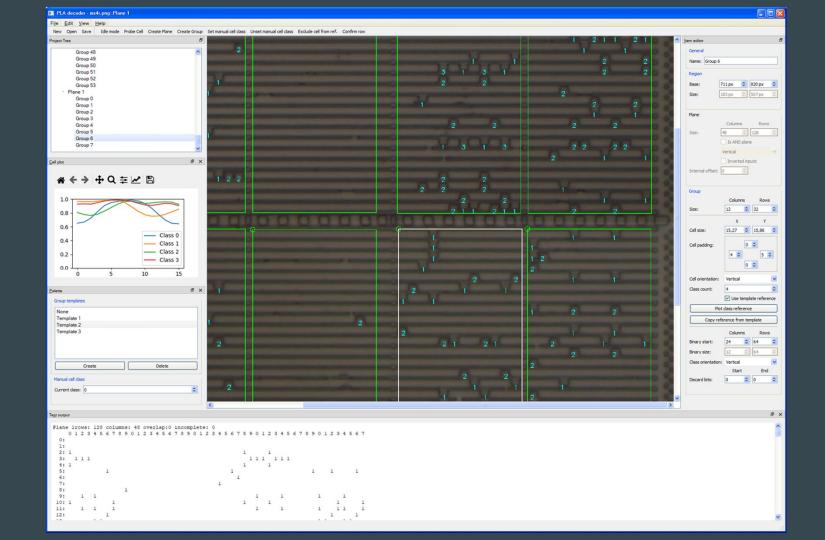




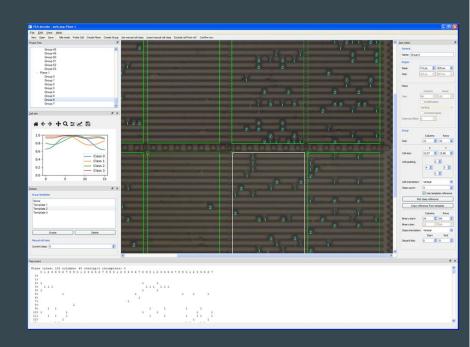
1D cell function

Reference cell functions


r

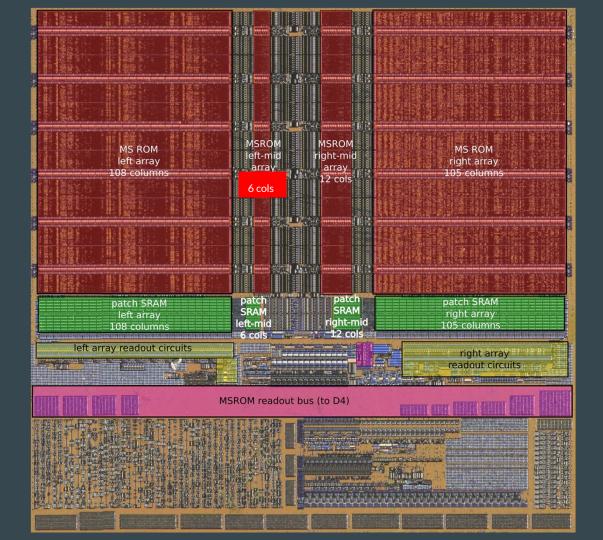

Unknown cell function

$$s_j = \sum_i \frac{(x_i - r_{i,j})^2}{r_{i,j}^2}$$

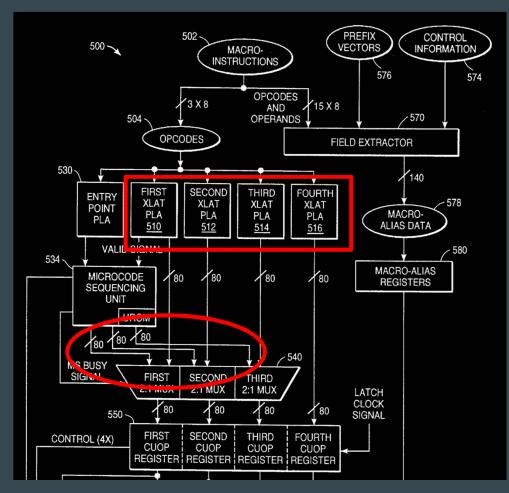

Cell scores

 \mathfrak{X}

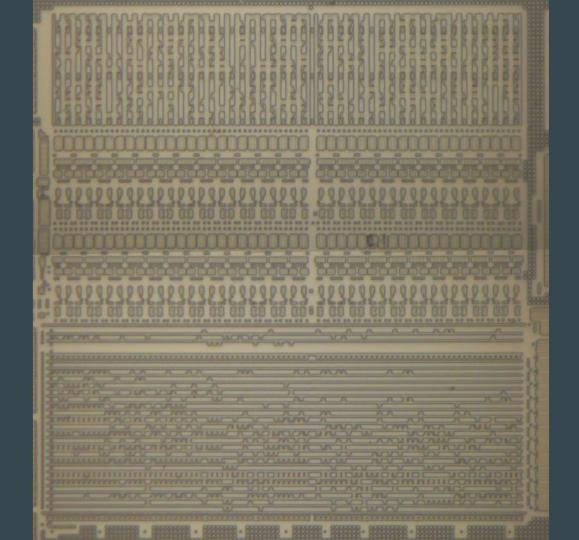
pladecode https://github.com/peterbjornx/pladecode

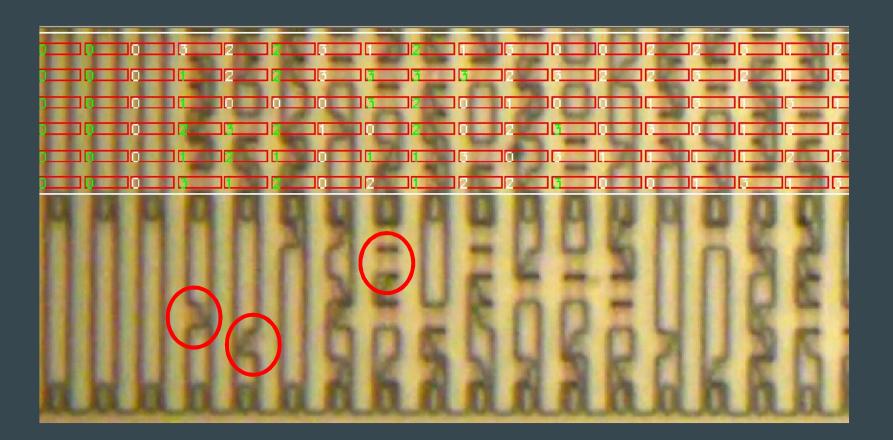

- Decodes mask-programmed ROM and PLAs
- Outputs
 - C simulator code for PLA
 - Text representation of ROM
- Qt based UI exposes all state

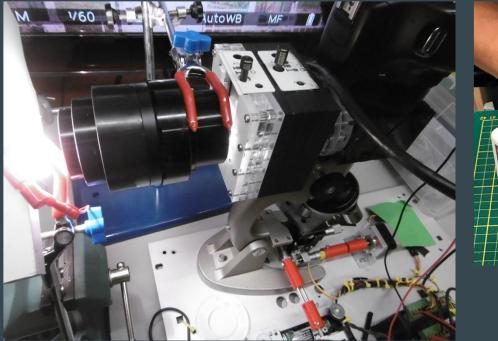
К


128 x 408

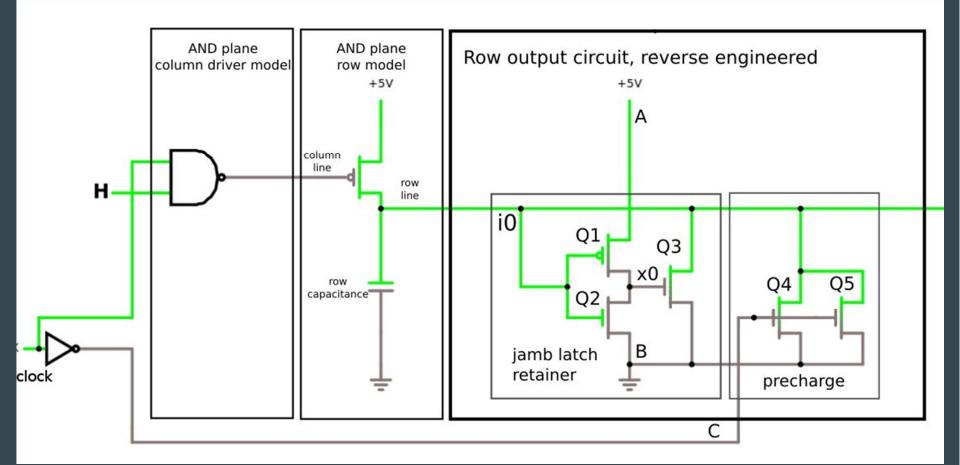
128 x 420

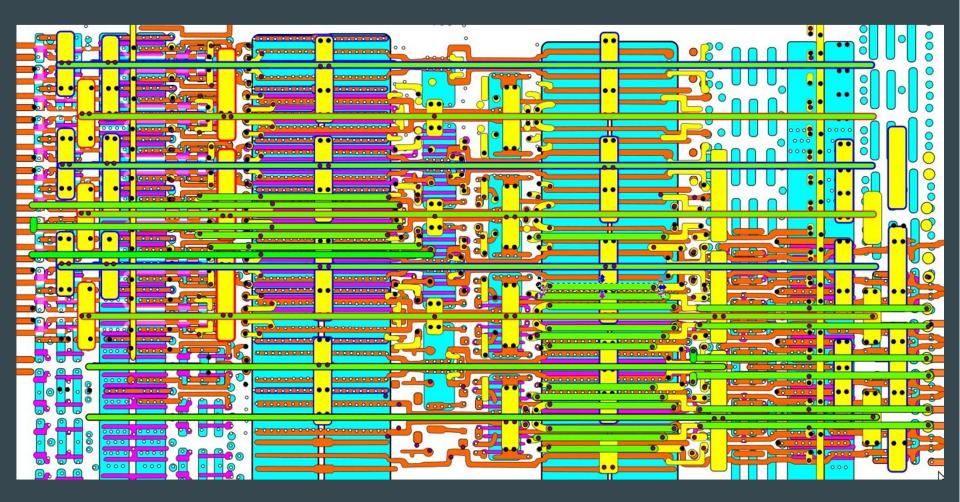


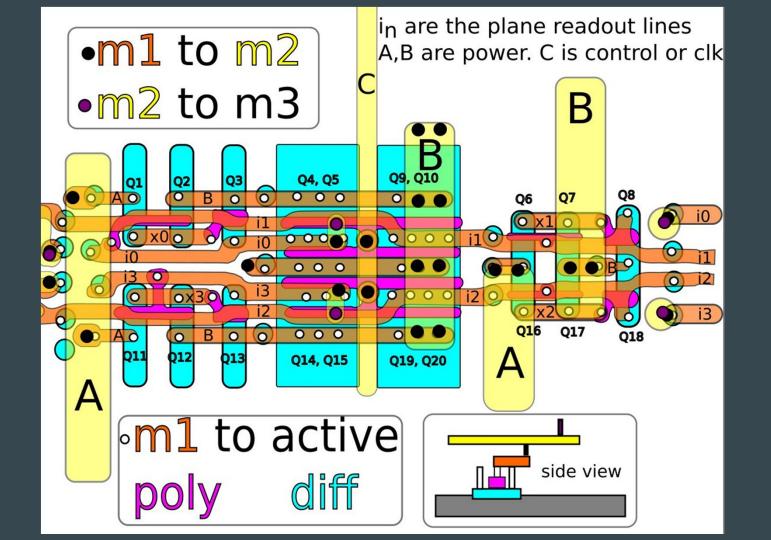

VALID BIT	CONTROL FIELD FOR INDIRECT ACCESS OF OTHER REGISTERS	OPCODE FIELD	SRC1	SRC2	DEST	IMMEDIATE	
<u>310</u>	<u>226</u>	<u>330</u>	<u>340</u>	<u>342</u>	<u>344</u>	<u>350</u>	

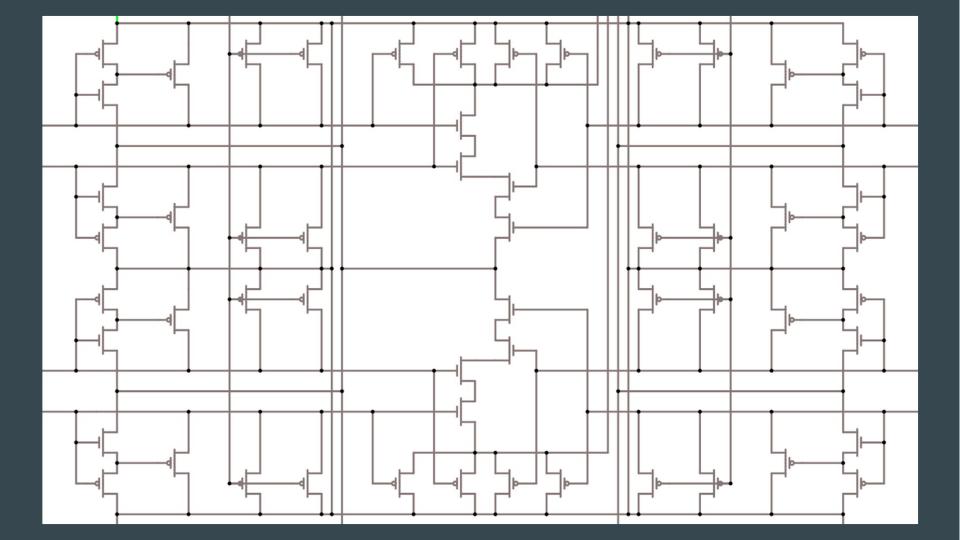

Source: US5559974, Fig 3

Source: US5559974, Fig 5

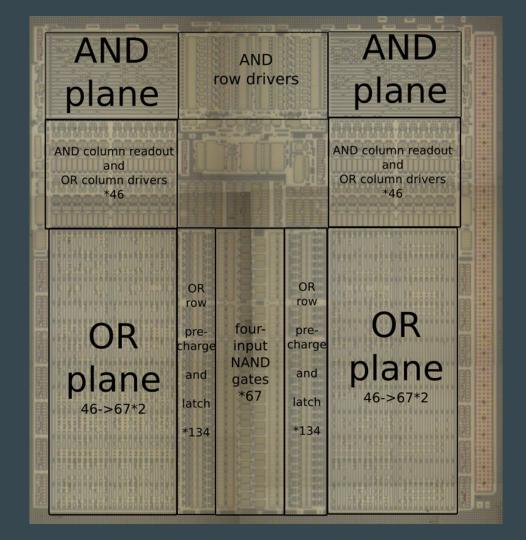


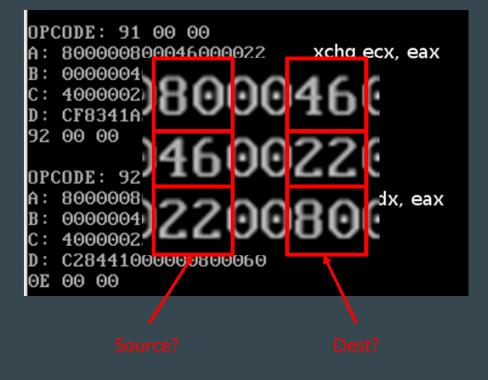








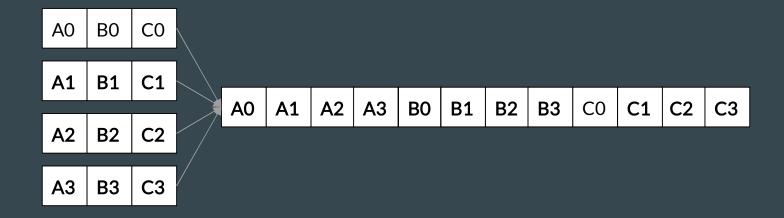


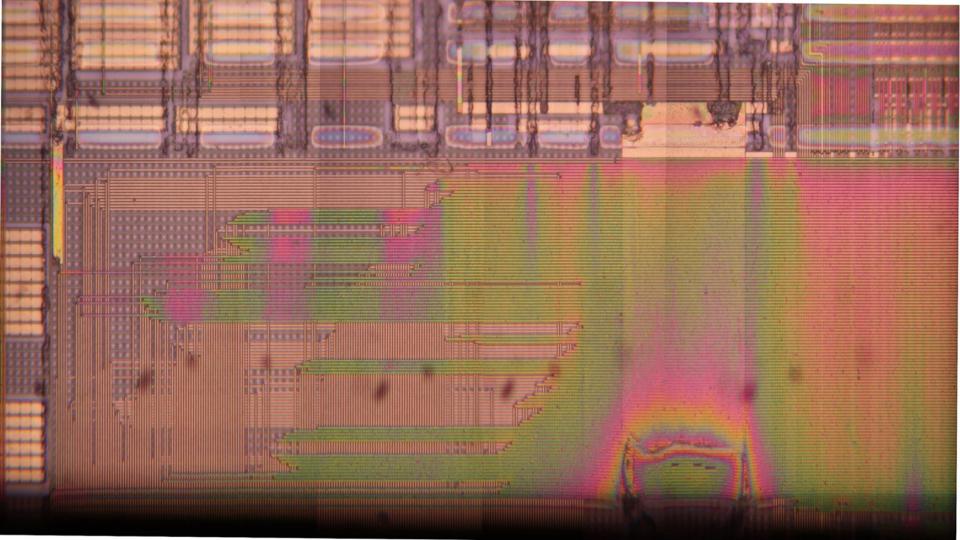


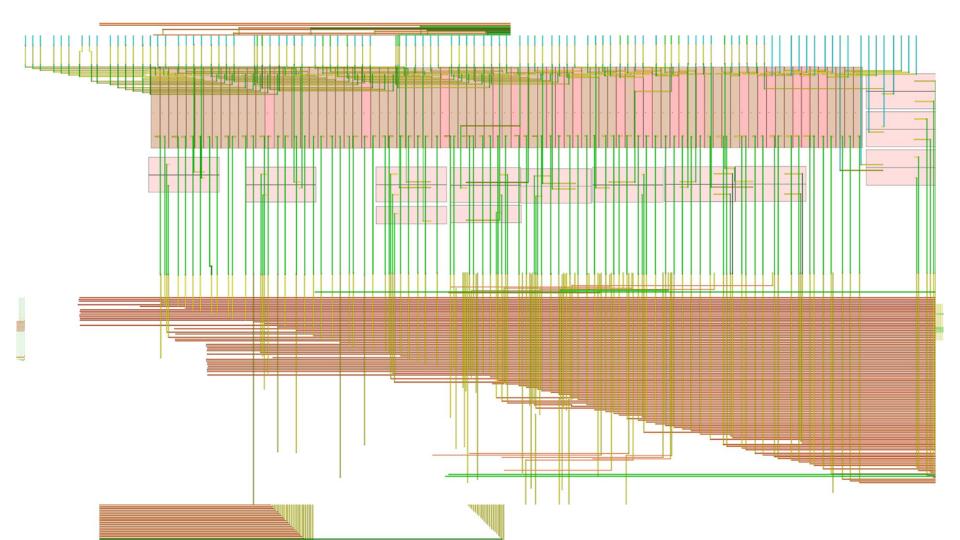
Known semantics: XCHG

t = aa = bb = t

Finding fields by comparison


OPCODE: 9E 00 00 A: 800124800000005C00 B: 00000100080000C60 C: 0FFB9500006A000899	push cs
D: 4084406A6A0000B0A2 16 00 00	
OPCODE: 16 00 00 A: 800114800000005C00 B: 000001000080000C60 C: 0FFB9500006A000899 D: 4084406A6A0000B0A2	push ss


t = getsegsel(\$seg) store...


Mapping this onto the ROM

- 432+24+48+420 = 924 columns per physical row
- 72 bit microinstruction word
- 3 microinstructions per cycle from ROM
- 128 rows per block

Row interleaving

Indexing rectangles found 111 named rectangles after metal 1	0 x63	3 y63	6 z63
found 111 named rectangles after metal 2 found 111 named rectangles after metal 3	1 x65	4 y65	7 z65
	2 x58	5 y58	8 z58
Assigning rectangle ids (re)named 177 rectangles, for a total of 288 in metal 1			
(re)named 1531 rectangles, for a total of 1531 in metal 2 (re)named 1357 rectangles, for a total of 1357 in metal 3	9 x64	21 y64	33 z64
Indexing vias	10 ×60	22 y60	34 z 60
found 0 named vias after via 1 to 2 found 0 named vias after via 2 to 3	11 x61	23 y61	35 z61
	12 x57	24 y57	36 z 57
Assigning via ids (re)named 158 vias, for a total of 2 in via 1 to 2 layer	13	25	37
(re)named 252 vias, for a total of 2 in via 2 to 3 layer	14 x67	26 y67	38 z67
Indexing nets found 160 nets after metal 1	15 x59	27 y59	39 z 59
found 216 nets after metal 2	16 x56	28 y56	40 z 56
found 216 nets after metal 3 found 216 nets after via 1 to 2	17 x66		40236 41266
found 216 nets after via 2 to 3		29 y66	
ssigning rectangles to nets	18 x70	30 y70	42 z70
assigned 200 rectangles in metal 1, generating 70 new nets assigned 1531 rectangles in metal 2, generating 996 new nets	19 x4	31 y4	43 z4
assigned 1357 rectangles in metal 3, generating 1152 new nets	20 x6	32 y6	44 z6
Assigning vias to nets assigned 158 vias in via 1 to 2, generating 158 new nets			
assigned 252 vias in via 2 to 3, generating 250 new nets	45 x12	65 y12	85 z12
Initial index and assign pass results:	46 x5	66 y5	86 z5
total 3176 rectangles across all layers total 410 vias across all layers	47 x17	67 y17	87 z17
total 2844 nets, of which 2628 newly autogenerated	48 x11	68 y11	88 z11
Determining intra-layer connectivity	49 x10	69 y10	89 z10
found 58 already connected, 11 new endpoint joins in metal 1, merging away 11 nets found 453 already connected, 125 new endpoint joins in metal 2, merging away 125 nets	50 x18	70 y18	90 z18
found 84 already connected, 108 new endpoint joins in metal 3, merging away 108 nets	51 x19	71 y19	91 z 19
Inferring vias found 596 alreadu connected, 421 new endpoint joins between metal 1 and 2, of which 126 already had vias	52 x9	72 y9	92 z 9
found 557 already connected, 152 new endpoint joins between metal 2 and 3, of which 120 already had vias	53 x7	73 y7	93 z7
Determining via connectivity	54 x20	74 v20	94 z 20
found 0 already connected, 451 new between metal 1 and via 1 to 2, merging away 451 nets found 426 already connected, 27 new between metal 2 and via 1 to 2, merging away 27 nets	55 x41	75 y41	95 z41
found 7 already connected, 1204 new between metal 2 and via 2 to 3, merging away 1204 nets found 300 already connected, 885 new between metal 3 and via 2 to 3, merging away 885 nets	56 x8	76 y8	96 z 8
	57 x39	77 y39	97 z 39
Flushing net information to rectangles already in SUG updated 70 nets in metal 1	58 x42	78 y42	98 z 42
updated 996 nets in metal 2 updated 1152 nets in metal 3	59 x 68	79 y68	99 z 68
- Flushing net information to vias already in SVG	60 x40		100 z40
updated 2 nets in via 1 to 2		80 y40	tore story of two story
updated 142 nets in via 2 to 3 found 1295 vias not in SVG	61 x43	81 y43	101 z43
Adding new vias to SUG	62 x71	82 y71	102 z71
Writing output file svg-edited3.svg	63 x49	83 y49	103 z49
writing output file sogradient sosy physical sources and sourc	64 x21	84 y21	104 z21

Google find!

AP-526

intel

D.3. Uop Pseudocode for Macroinstructions

Following is a description of the timing tables.

Example timing:

HDR: "IMUL rm32"

: 1111011.1 11.101.sss ------

FLOW tmp0 := int_mul.port0.latency4(EAX, REG_sss)

EAX := move.port01.latency1(tmp0);

EDX := port0.latency1(Tmp0, const);

Where:

"IMUL rm32"

Is the Intel Macro Instruction:

Putting it to use

HDR:	"STD":	(1111	110	1)									
1FLOW	: TMP5= Port_01.	latency_1 <mark>(</mark> Ari	thF	LAGS, Svs	temFlags)									
2FLOW	: TMP5= Port_01.	latency_1(TMP	5,	000010000)) # 0x10									
3FL0W	: SystemFlags= P	ort_01.latenc	y_1	(TMP5, 00	00001010) #0×A									
4FLOW	: sink=	move.Port_01.	lat	ency_1(CO	NST)									
OPCOD	E: FD 00 00													
A: 01	C0088F9283800001	TMP5	:=	SystemFLA	GS,ArithFLAGS	0P:1C0	LSEG:0	IMM:000	f0:1	f1: 0	f2:0	f3:	11	f4:0
B: 06	060000038382 <mark>C100</mark>	TMP5	:=	CONST	, TMP5	0P:606	LSEG:0	IMM:010	f0:0	f1:16	f2:0	f3:	0	f4:0
C: 06	050400038F82 <mark>C0A0</mark>	SystemFLAGS	:=	CONST	, TMP5	0P:605	LSEG:0	IMM:00A	f0:0	f1:16	f2:0	f3:	8	f4:0
D: 06	0010000000800002	SINK	:=	CONST	, CONST	OP:600	LSEG:0	IMM:000	f0:2	f1: 0	f2:0	f3:	20	f4:0

The microinstruction encoding, so far.

11 0 9 817 6 5 4 3 2 1 0 9 8 7 615 4 3 2 1 0 9 8 716 5 4 3 2 1 0 918 7 6 5 4 3 2 110 9 8 7 6 5 4 3121 0 9 817 6 5 4 312 1 0 9 8 7 6 5 4 312 1 0 9	1 0	- 16						1												2	2	Ľ.,		1									3	1											1		4									Т						5.	5															I.	- 1																			0													5	5	6	6	5	5	6	6	6	6	6	6	6	6	6	6	5	5	5	6	6	6	5
tttttt	413 2 1 0	5 413	6 5	7 (8	9	9	0	1	2 1	H12	3	4	5		6	17	8	9	0	. (11	21	31	1	4	5	6	7	3 1	8	9	Θ	LI)	1	2	3	E	4		5	6	?	в '	18	9	0	1	1	2	3		4		6	11	?	3	8	9	9	9	0	1	2	2	2	3	3	3	3		ł	4	4	5	5	15	6 I	6	f	?	7	?	8	8	8	8)	Ð	9	9	9	9	2)))))))	Ì	Ì	G	l l	G))	Ð	9	9	9	9	9	9	0	0	0	0	0	0	0	0	9	Ð	9	9	0	9	9	9
Invaliant I ISec I ISec I IDect I I Sec I Immediate	+																+					+	-																																																								-+																																																						
Tupartasi upubuc i i usrca i usrca i usrca i useg i imminitasi immediate	I FlowM		e.	iat	di	me	mm	I			1	as	11	A1	ımí	Im	1	r I	leg	LS	I	U.	(I				ŧ.	s	De	L				1				:1	rc	.Si	L								2	°C.	Sr	LS	1																										1																																			e			e	e	e	e		e	e	e	e					е	e		

- The obvious 3 operand form fields: opcode, src1, src2, dest
- FlowMarker:
 - Indicates Beginning Of Macroinstruction (BOM), End of Macroinstruction (EOM) and other flow control metadata

Instructions and Opcodes

LEA: This instruction is optionally included in the hybrid execution unit 35. If it is to be included, the hybrid execution unit 35 will also have to include a 3 input adder which, in a preferred embodiment, would consist of a 3-to-2 reducer leading into a 2-input Kogge-Stone adder. The LEA instruction returns an effective address calculated from a base which is on the lower bits of source 2, and index which is on source 1 and a displacement which is on the upper bits of source 2 (also referred to as LEA source 3), and a scale which is bits [5:4] of the Uopcode. The result is right aligned to bit 0 of the result. The base is shifted left by the amount of the scale and added to the index and the displacement. The size of the data returned is determined by the LEA modifier. The ASZ16 modifier returns 16 bit data. The ASZ32 modifier returns 32 bit data. For each modifier, the upper data bits are forced to zero. No flags are returned. If implemented, this instruction follows the following formula:

> flags := '0 LEA.ASZ16 data := '0::70 & (src1[15:0] + src2[15:0] SHL uop[5:4] + src2[47:32]) LEA.ASZ32 data := '0::54 & (src1[31:0] + src2[31:0] SHL uop[5:4] + src2[63:32])

INTEXTRACT: This instruction returns portions of the source 2 input data right aligned to bit [0] of the result, according to the INTEXTRACT modifier. The HI32 modifier returns source 2 bits [63:32]. The HI16 modifier returns source 2 bits [31:16]. The UP32 modifier returns source 2 bits [66:35]. For each modifier, the upper data bits are forced to zero. The flags associated with the source 2 input data are returned. The result data is set as follows:

flags := src2 flags INTEXTRACT.HI32 data out := '0::54 & src2[63:32] INTEXTRACT.HI16 data out := '0::70 & src2[63:48] INTEXTRACT.UP32 data out := '0::54 & src2[66:35]

US5574942A

Immediate Operands

Immediate Operands

- Only 9 bits for Immediate
- Immediate Alias Control field selects source for "immediate" data
 - 0x11 seems to select Macroinstruction Alias, IMM field selects which MAR register
 - 0x0 Macroinstruction Immediate
 - 0x10 REG_Op_Size (Operand size in bytes)
 - 0x11 virt_ip
 - 0x12 next_virt_ip
- 0x04 seems to be used for sign-extended literal, where the data is signext(IMM)
- 0x16, 0x0E also seem to be literal?
- Constant ROM?

Registers: LSrc1,2 and Dest

Index	0x00	0x08	0x10	0x18	0x20	0x28	0x30	0x38
0	CONST	AL	ST(0)			AX		EAX
1	SINK	CL	ST(1)			СХ		ECX
2	TMP0	DL	ST(2)			DX		EDX
3	TMP1	BL	ST(3)			BX		EBX
4	TMP2	AH	ST(4)		FCC	SP		ESP
5	TMP3	СН	ST(5)		ArirthFlags	BP		EBP
6	TMP4	DH	ST(6)	FSW		SI		ESI
7	TMP5	BH	ST(7)	SystemFlags		DI		EDI

Registers: LSrc1,2 and Dest

Ind ex	0x50	0x70	0x88	0xA8	0xC0	0xC8
0			(E)AX	(E)AX		REG_sss
1			(E)CX	(E)CX		
2		MMX Source	(E)DX	(E)DX		
3			(E)BX	(E)BX		
4	ST(i)		(E)SP	(E)SP	Reg in Opcode	REG_ddd
5			(E)BP	(E)BP		
6		MMX Dest	(E)SI	(E)SI		
7			(E)DI	(E)DI		

Segments

Index	0x00	0x08
0	SEG_SINK	ES
1		CS
2		SS
3		DS
4		FS
5		GS
6	GDTR	
7	LDTR	TR

IDTR?
LINSEG?
PHYSEG?

Control registers

Shown microcode is CNL, from Github

U24ad U24ad U24ae U24af U24b0 U24b1 U24b2 U24b3 U24b3 U24b3	wrmsr_apicbase_continue: BTS_DSZ64 UJMFCC_DIRECT_TAKEN_CONDNB MOUEFROMCREG_DSZ32 ANDOR_DSZ32 MOUEFROMCREG_DSZ32 MOUEFROMCREG_DSZ32 UCALLPARAM_DIRECT IMPLIED_JUMP_TO_Ua050_check_apic_b	TMP5 TMP9 TMP9 TMPD TMP7 ase_over1ap_wit	<pre>< SRC_SXQA < CONST_0 < CONST_0 < CONST_0 < THP2 < CONST_0 < CONST_0 < CONST_0 < CONST_0 < CONST_0 h_smrr</pre>	, TMP5 , TMP5 , 0x6f7 , TMP9 , 0x2ec , 0x2ee , 0x2ee , CONST_0	, TMP5 , UROM_SINK , TMP9 , TMP9 , TMP0 , TMP7 , UROM_SINK	, K0 , K0 , K0 , K0 , K0 , K0 , K0	# # , XR: U884c wrmsr_past_rsvd_bit_check # Lit in SRC_SXQA, 0x6f7 = CORE_CR_RR_MODE # # Lit in SRC_SXQA, 0x2ec = PMH_CR_SMRR_BASE # Lit in SRC_SXQA, 0x2ec = PMH_CR_SMRR_MASK # Lit in SRC_SXQA, 0x2ec = PMH_CR_SMRR_MASK # , XR: Ua050 check_apic_base_overlap_with_smrr
U2464 U2465 U2466 U2466 U2466	MOVEFROMCREG_DSZ32 MOVEFROMCREG_DSZ32 UCALLPARAM_DIRECT IMPLIED JUMP TO Ua050 check_apic_b/	TMPD TMP7 ase_overlap_wit	< CONST_0 < CONST_0 < CONST_0 h_smrr	, 0x2ff , 0x282 , CONST_0	, TMPD , TMP7 , UROM_SINK	, КӨ , КӨ , КӨ	# Lit in SRC_SXQA, 0x2ff = PMH_CR_SMRR2_BASE # Lit in SRC_SXQA, 0x282 = PMH_CR_SMRR2_MASK # , XR: Ua050 check_apic_base_overlap_with_smrr

Some example microcode flows: DIV

TMP2 := WUCONCAT(EDX, EAX)
TMP0 := DIV(TMP2, REG_sss)
EAX := MOVE(TMP2)
EDX := INTEXTRACT.HI32(TMP0)

Some example microcode flows

7FA4h	SS base
7FA8h	ES
7FACh	CS
7FB0h	SS
7FB4h	DS
7FB8h	FS
7FBCh	GS
7FC0h	LDTR
7FC4h	TR
7FC8h	DR7
7FCCh	DR6
7FD0h	EAX
7FD4h	ECX
7FD8h	EDX
7FDCh	EBX
7FE0h	ESP
7FE4h	EBP
7FE8h	ESI
7FECh	EDI
7FF0h	EIP
7FF4h	EFLAGS
7FF8h	CR3
7FFCh	CR0

TMP7 := 0P_032 (CONST_0e_171) CONST_0e_171) IHH: 171 TMP2 := ADD_DS2M (TMP7 , CONST_0e_07c) IHH: 171 TMP2 := ADD_DS2M (TMP7 , CONST_0e_07c) IHH: 77 , CUST_0e_07c) IHH: 77 TMP3 := LOAD_200 (0x-00000004 , THP2) IHH: 1fc LSeg: SEG_01 SINK := MOVETOCREG (CONST_0e_06b , REG_36) IHH: 1fd LSeg: SEG_01 TMP3 := LOAD_200 (0x-0000000C , THP2) IHH: 1fd LSeg: SEG_01 EDI_30 := LOAD_200 (0x-00000010 , THP2) IHH: 1fd LSeg: SEG_01 ESF_30 := LOAD_200 (0x-0000010 , THP2) IHH: 1fd LSeg: SEG_01 ESF_30 := LOAD_200 (0x-0000010 , THP2) IHH: 1fd LSeg: SEG_01 ESF_30 := LOAD_200 (0x-0000028 , THP2) IHH: 1dd LSeg: SEG_01 EXX_30 := LOAD_200 (0x-0000028 , THP2) IHH: 1dd LSeg: SEG_01 EXX_30 := LOAD_200 (0x-0000028 , THP2) IHH: 1dd LSeg: SEG_01 EXX_30 := LOAD_200 (0x-0000030 , THP2) IHH: 1dd LSeg: SEG_0					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	TMP7	:= OP_032	(CONST_0e_171	, CONST_0e_171) IMM: 171
THPB := LOAD_200 (CONST_06_0004 , THP2) LSeg: SEG_01 REG_36 := LOAD_200 (0x-0000004 , THP2) IMH: 1fc LSeg: SEG_01 SINK := MOUETOCREG (CONST_0e_06064 , THP2) IMH: 1fc LSeg: SEG_01 TMP4 := LOAD_200 (0x-0000006 , TMP2) IMH: 1fd LSeg: SEG_01 DED_30 := LOAD_200 (0x-00000010 , TMP2) IMH: 1fd LSeg: SEG_01 ED1_30 := LOAD_200 (0x-0000011 , TMP2) IMH: 1fd LSeg: SEG_01 ESI_30 := LOAD_200 (0x-0000018 , TMP2) IMH: 1ec LSeg: SEG_01 ESF_30 := LOAD_200 (0x-0000012 , TMP2) IMH: 1ed LSeg: SEG_01 EDX_30 := LOAD_200 (0x-0000024 , TMP2) IMH: 1ed LSeg: SEG_01 EDX_30 := LOAD_200 (0x-0000024 , TMP2) IMH: 1dd LSeg: SEG_01 EAX_30 := LOAD_200 (0x-0000024 , TMP2) IMH: 1dd LSeg: SEG_01 EAX_30 := LOAD_200 (0x-0000024 , TMP2) IMH: 1dd LSeg: SEG_01 SINK := MOVETOCREG (CDNST_0e_17d , REG_36) IMH: 1dd LSeg: SEG_01 <tr< th=""><td>TMP2</td><td>:= ADD_DSZN</td><td>(TMP7</td><td>, CONST_0c_07c</td><td>) IMM: 7c U2: 20</td></tr<>	TMP2	:= ADD_DSZN	(TMP7	, CONST_0c_07c) IMM: 7c U2: 20
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TMPB			, TMP2) LSeg: SEG_01
SINK := MOUETOCREG (CONST_0e_06b, REG_36) IMM: 6b TMP4 := L0AD_200 (0x-0060008 , TMP2) IMM: 1f8 LSeg: SEG_01 EDI_30 := L0AD_200 (0x-00600010 , TMP2) IMM: 1f8 LSeg: SEG_01 ESI_30 := L0AD_200 (0x-0060011 , TMP2) IMM: 1f4 LSeg: SEG_01 ESI_30 := L0AD_200 (0x-0060014 , TMP2) IMM: 1ec LSeg: SEG_01 ESP_30 := L0AD_200 (0x-0060012 , TMP2) IMM: 1ec LSeg: SEG_01 ESP_30 := L0AD_200 (0x-0060026 , TMP2) IMM: 1ec LSeg: SEG_01 EDX_30 := L0AD_200 (0x-0060024 , TMP2) IMM: 1ec LSeg: SEG_01 ECX_30 := L0AD_200 (0x-0060026 , TMP2) IMM: 1d8 LSeg: SEG_01 ECX_30 := L0AD_200 (0x-0060026 , TMP2) IMM: 1d4 LSeg: SEG_01 ECX_30 := L0AD_200 (0x-0060027 , TMP2) IMM: 1d4 LSeg: SEG_01 ECX_30 := L0AD_200 (0x-0060036 , TMP2) IMM: 1d4 LSeg: SEG_01 SINK := MOUETOCREG (CONST_0e_17d , REG_36) IMM: 1d4 LSeg: SEG_01 TMP4	REG 36	:= LOAD 200	(0x-0000004	. TMP2) IMM: 1fc LSeg: SEG 01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SINK	:= MOVETOCREG	(CONST Oe O6b	, REG 36) IMM: 6Ъ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TMP4	:= LOAD 200	(0x-000008	, TMP2) IMM: 1f8 LSeg: SEG 01
EBP_30 := L0AD_200 (0x-0000001C , TMP2) IMM: 1e8 LSeg: SEG_01 ESF_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 ECX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 EAX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 REG_36 := L0AD_200 (0x-0000030 , TMP2) IMM: 1dc LSeg: SEG_01 SINK := MOVETOCREG (CONST_0e_17d , REG_36) IMM: 1dc LSeg: SEG_01 SINK := MOVETOCREG (Ox-0000038 , TMP2) IMM: 1cd LSeg: SEG_01 TMP3 := L0AD_200 (0x-0000038 , TMP2) IMM: 1c4 LSeg: SEG_01 TMP4 := WRSEGFLD (TMPA , REG_36) IMM: 1c4 LSeg: SEG_01 TMP4 := UAB_200 (0x-0000044 , TMP2) IMM: 1c4 LSeg: SEG_01 <th>TMP3</th> <th>:= LOAD 200</th> <th>(0x-000000C</th> <th>, TMP2</th> <th>) IMM: 1f4 LSeg: SEG 01</th>	TMP3	:= LOAD 200	(0x-000000C	, TMP2) IMM: 1f4 LSeg: SEG 01
EBP_30 := L0AD_200 (0x-0000001C , TMP2) IMM: 1e8 LSeg: SEG_01 ESF_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 ECX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 EAX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 REG_36 := L0AD_200 (0x-0000030 , TMP2) IMM: 1dc LSeg: SEG_01 SINK := MOVETOCREG (CONST_0e_17d , REG_36) IMM: 1dc LSeg: SEG_01 SINK := MOVETOCREG (Ox-0000038 , TMP2) IMM: 1cd LSeg: SEG_01 TMP3 := L0AD_200 (0x-0000038 , TMP2) IMM: 1c4 LSeg: SEG_01 TMP4 := WRSEGFLD (TMPA , REG_36) IMM: 1c4 LSeg: SEG_01 TMP4 := UAB_200 (0x-0000044 , TMP2) IMM: 1c4 LSeg: SEG_01 <th>EDI 30</th> <th>:= LOAD 200</th> <th>(0x-0000010</th> <th>, TMP2</th> <th>) IMM: 1f0 LSeg: SEG 01</th>	EDI 30	:= LOAD 200	(0x-0000010	, TMP2) IMM: 1f0 LSeg: SEG 01
EBP_30 := L0AD_200 (0x-0000001C , TMP2) IMM: 1e8 LSeg: SEG_01 ESF_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 ECX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 EAX_30 := L0AD_200 (0x-000002C , TMP2) IMM: 1dc LSeg: SEG_01 REG_36 := L0AD_200 (0x-0000030 , TMP2) IMM: 1dc LSeg: SEG_01 SINK := MOVETOCREG (CONST_0e_17d , REG_36) IMM: 1dc LSeg: SEG_01 SINK := MOVETOCREG (Ox-0000038 , TMP2) IMM: 1cd LSeg: SEG_01 TMP3 := L0AD_200 (0x-0000038 , TMP2) IMM: 1c4 LSeg: SEG_01 TMP4 := WRSEGFLD (TMPA , REG_36) IMM: 1c4 LSeg: SEG_01 TMP4 := UAB_200 (0x-0000044 , TMP2) IMM: 1c4 LSeg: SEG_01 <th></th> <th>:= LOAD 200</th> <th>(0x-0000014</th> <th>, TMP2</th> <th>) IMM: 1ec LSeg: SEG 01</th>		:= LOAD 200	(0x-0000014	, TMP2) IMM: 1ec LSeg: SEG 01
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	EBP 30	:= LOAD 200	(0x-0000018	, TMP2) IMM: 1e8 LSeg: SEG 01
EBX_30 := L0AD_200 (0x-0000020 , TMP2) IMM: 1e0 LSeg: SEG_01 EDX_30 := L0AD_200 (0x-0000024 , TMP2) IMM: 1da LSeg: SEG_01 ECX_30 := L0AD_200 (0x-0000022 , TMP2) IMM: 1da LSeg: SEG_01 EAX_30 := L0AD_200 (0x-0000022 , TMP2) IMM: 1da LSeg: SEG_01 EAX_30 := L0AD_200 (0x-0000022 , TMP2) IMM: 1da LSeg: SEG_01 REG_36 := L0AD_200 (0x-0000030 , TMP2) IMM: 1da LSeg: SEG_01 SINK := MOUETUCREG (CONST_0e_17d, REG_36) IMM: 1cd LSeg: SEG_01 TMP9 := L0AD_200 (0x-0000034 , TMP2) IMM: 1cd LSeg: SEG_01 TMP9 := L0AD_200 (0x-0000036 , TMP2) IMM: 1cd LSeg: SEG_01 TMP4 := WRSEGFLD (0x-0000036 , TMP2) IMM: 1cd LSeg: SEG_01 TMP4 := WRSEGFLD (TMPA , REG_36) IMM: 1cd LSeg: SEG_01 TMP4 := WRSEGFLD (TMPA , REG_36) IMM: 1cd LSeg: SEG_01 TMP4 := WRSEGFLD (TMPA , REG_36) IMM: 1cd LSeg: SEG_01 TMPA :=	ESP ³⁰	:= LOAD 200	(0x-000001C	, TMP2	
EDX_30 := L0AD_200 (0x-0000024 , TMP2) IMM: 1dc LSeg: SEG_01 ECX_30 := L0AD_200 (0x-0000028 , TMP2) IMM: 1dd LSeg: SEG_01 EAX_30 := L0AD_200 (0x-0000020 , TMP2) IMM: 1dd LSeg: SEG_01 REA_30 := L0AD_200 (0x-0000030 , TMP2) IMM: 1dd LSeg: SEG_01 SINK := MOVETOCREG (CONST_0e_17d REG_36) IMM: 1dd LSeg: SEG_01 SINK := MOVETOCREG (CONST_0e_17d REG_36) IMM: 1dd LSeg: SEG_01 TMP9 := L0AD_200 (0x-0000034 , TMP2) IMM: 1cc LSeg: SEG_01 TMP4 := WRSEGFLD (0x-0000034 , TMP2) IMM: 1cd LSeg: SEG_01 TMPA := WRSEGFLD (0x-0000034 , TMP2) IMM: 1cd LSeg: SEG_01 TMPA := WRSEGFLD (0x-0000034 , TMP2) IMM: 1cd LSeg: SEG_01 TMPA := WRSEGFLD (0x-0000036 , TMP2) IMM: 1cd LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: SEG_01 TMPA <td>EBX 30</td> <td>:= LOAD 200</td> <td>(0x-0000020</td> <td></td> <td></td>	EBX 30	:= LOAD 200	(0x-0000020		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EDX 30	:= LOAD 200	(0x-0000024	, TMP2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ECX 30	:= LOAD 200	(0x-0000028	, TMP2) IMM: 1d8 LSeg: SEG 01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EAX 30	:= LOAD 200	(0x-000002C	, TMP2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	REG ³⁶	:= LOAD 200	(0x-0000030	, TMP2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SINK	:= MOVETOCREG	(CONST Oe 17d	, REG 36) IMM: 17d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TMP9	:= LOAD_200	(0x-00 <u>0</u> 00 <u>3</u> 4	, TMP2) IMM: 1cc LSeg: SEG_01
NEG_30 LUND_200 (0x-0000044) , TMP2) TMM. 100 LSeg. SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 104 LSeg: GS REG_36 := LOAD_200 (0x-0000044) , TMP2) IMM. 104 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS REG_36 := LOAD_200 (0x-0000048) , TMP2) IMM. 04 LSeg: SS TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 104 LSeg: SS TMPA := UAD_200 (0x-0000050) , TMP2) IMM. 104 LSeg: SS TMP1 := LOAD_200 (0x-0000050) , TMP2) IMM. 124 LSeg: SEG_01 REG_36 := LOAD_000 (0x-0000050) , TMP2) IMM. 101 REG_36 :=	REG_36	:= LOAD_200	(0x-0000038	, TMP2) IMM: 1c8 LSeg: SEG_01
NEG_30 LUND_200 (0x-0000044) , TMP2) TMM. 100 LSeg. SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 104 LSeg: GS REG_36 := LOAD_200 (0x-0000044) , TMP2) IMM. 104 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS REG_36 := LOAD_200 (0x-0000048) , TMP2) IMM. 04 LSeg: SS TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 104 LSeg: SS TMPA := UAD_200 (0x-0000050) , TMP2) IMM. 104 LSeg: SS TMP1 := LOAD_200 (0x-0000050) , TMP2) IMM. 124 LSeg: SEG_01 REG_36 := LOAD_000 (0x-0000050) , TMP2) IMM. 101 REG_36 :=	TMPA	:= WRSEGFLD	(0×00000004	, REG_36) IMM: 04 LSeg: TR
NEG_30 LUND_200 (0x-0000044) , TMP2) TMM. 100 LSeg. SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 104 LSeg: GS REG_36 := LOAD_200 (0x-0000044) , TMP2) IMM. 104 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS REG_36 := LOAD_200 (0x-0000048) , TMP2) IMM. 04 LSeg: SS TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 104 LSeg: SS TMPA := UAD_200 (0x-0000050) , TMP2) IMM. 104 LSeg: SS TMP1 := LOAD_200 (0x-0000050) , TMP2) IMM. 124 LSeg: SEG_01 REG_36 := LOAD_000 (0x-0000050) , TMP2) IMM. 101 REG_36 :=	REG_36	:= LOAD_200	(0x-000003C	, TMP2) IMM: 1c4 LSeg: SEG_01
NEG_30 LUND_200 (0x-0000044) , TMP2) TMM. 100 LSeg. SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 104 LSeg: GS REG_36 := LOAD_200 (0x-0000044) , TMP2) IMM. 104 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS REG_36 := LOAD_200 (0x-0000048) , TMP2) IMM. 04 LSeg: SS TMPA := WRSEGFLD (TMPA , REG_36) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 04 LSeg: SS TMPA := UAD_200 (0x-0000042) , TMP2) IMM. 104 LSeg: SS TMPA := UAD_200 (0x-0000050) , TMP2) IMM. 104 LSeg: SS TMP1 := LOAD_200 (0x-0000050) , TMP2) IMM. 124 LSeg: SEG_01 REG_36 := LOAD_000 (0x-0000050) , TMP2) IMM. 101 REG_36 :=	TMPA	:= WRSEGFLD	(TMPA	, REG_36) IMM: 04 LSeg: LDTR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	REG_36	:= LOAD_200	(0x-0000040	, TMP2) IMM: 1c0 LSeg: SEG_01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TMPA	:= WRSEGFLD	(TMPA	, REG_36) IMM: 04 LSeg: GS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	REG_36	:= LOAD_200	(0x-0000044	, TMP2) IMM: 1bc LSeg: SEG_01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TMPA	:= WRSEGFLD	(TMPA	, REG_36) IMM: 04 LSeg: FS
REG_36 := L0AD_200 (0x-000004C , TMP2) IMM: 1b4 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: SS TMP1 := L0AD_200 (0x-0000050 , TMP2) IMM: 1b0 LSeg: SEG_01 REG_36 := L0AD_080 (0x-00000DC , TMP2) IMM: 124 LSeg: SEG_01 TMPA := MOUETOCREG (CONST_0e_101 , REG_36) IMM: 101 REG_36 := L0AD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01	REG_36	:= LOAD_200	(0x-0000048	, TMP2) IMM: 1b8 LSeg: SEG_01
REG_36 := L0AD_200 (0x-000004C , TMP2) IMM: 1b4 LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: SS TMP1 := L0AD_200 (0x-0000050 , TMP2) IMM: 1b0 LSeg: SEG_01 REG_36 := L0AD_080 (0x-00000DC , TMP2) IMM: 124 LSeg: SEG_01 TMPA := MOUETOCREG (CONST_0e_101 , REG_36) IMM: 101 REG_36 := L0AD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01	TMPA	:= WRSEGFLD	(TMPA	, REG_36) IMM: 04 LSeg: DS
REG_36 := LOAD_080 (0x-00000DC , TMP2) IMM: 124 LSeg: SEG_01 TMPA := MOUETOCREG (CONST_0e_101 , REG_36) IMM: 101 REG_36 := LOAD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01	REG_36	:= LOAD_200	(0x-000004C	TMP2) IMM: 1b4 LSeg: SEG_01
REG_36 := LOAD_080 (0x-00000DC , TMP2) IMM: 124 LSeg: SEG_01 TMPA := MOUETOCREG (CONST_0e_101 , REG_36) IMM: 101 REG_36 := LOAD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01	TMPA	:= WRSEGFLD	(TMPA	, REG_36) IMM: 04 LSeg: SS
REG_36 := LOAD_080 (0x-00000DC , TMP2) IMM: 124 LSeg: SEG_01 TMPA := MOUETOCREG (CONST_0e_101 , REG_36) IMM: 101 REG_36 := LOAD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01	TMP 1	:= LOAD_200	(0x-0000050	, TMP2) IMM: 1b0 LSeg: SEG_01
TMPA := MOVETOCREG (CONST_0e_101 REG_36) IMM: 101 REG_36 := LOAD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: ES	REG_36	:= LOAD_080	(0x-00000DC	, TMP2) IMM: 124 LSeg: SEG_01
REG_36 := LOAD_200 (0x-0000054 , TMP2) IMM: 1ac LSeg: SEG_01 TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: ES	TMPA			, REG_36) IMM: 101
TMPA := WRSEGFLD (TMPA , REG_36) IMM: 04 LSeg: ES			(0x-0000054	, TMP2) IMM: 1ac LSeg: SEG_01
	TMPA	:= WRSEGFLD	(TMPA	, REG_36) IMM: 04 LSeg: ES

Some example microcode flows

TMPA	:= OP_032	(CONST_0e_022	, CONST_0e_022) IMM: 22
TMPA	:= BTEST_DSZN	(TMPA	, 0×00D) IMM: Od
SINK	:= OP_313	(TMPA	, TMP6) IMM: 86
TMP 3	:= RDSEGFLD	(0×00000001	, 0x00000001) IMM: 01 LSeg: TR
TMP 3	:= BTEST_DSZN	(TMP3	, 0×00B) IMM: 0b
SINK	:= OP_313	(TMP3	, TMP8) IMM: 199 U2: 8
тмрз	:= LOAD_100	(0×00000066	, 0x00000066) IMM: 66 LSeg: TR U2: 20
TMP4	:= SHR	(TMP1	, 0x003) IMM: 03
TMP5	:= AND_DSZN	(TMP1	, 0×007) IMM: 07
TMP2	:= SUB_DSZN	(CONST_0e_004	, TMP2) IMM: 04
TMP6	:= SHR	(CONST_0e_00f	, TMP2) IMM: Of
TMP6	$:= 0P_{624}$	(TMP6	, TMP5)
TMP5	:= LOAD_100	(TMP4	, TMP3) LSeg: TR
TMP6	:= AND_DSZN	(TMP5	, TMP6)
SINK	:= OP_315	(TMP6	, TMP8) IMM: 199
SINK	:= OP_098	(CONST_0	, REG_33)
SINK	:= SETcc_NS	(CONST_0	, REG_33)
TMP5	:= MOVE_DSZN	(CONST_0	, ESI_30)
TMP 3	:= MOVE_DSZN	(CONST_0	, EDI 30)
TMP7	:= MOVE DSZ16	(CONST_0	, ECX ⁻ 30)
SINK	:= MOVETOCREG	(CONST_0e_16e	, REG_33) IMM: 16e
SINK	:= OP_290	(CONST_0	, TMP0)
TMP 3	:= MOVE DSZN	(0x0C1	, 0х0С1) IMM: с1
TMP4	:= OP_120	(0×00D	, 0×00D) IMM: 0d
SINK	:= SIGEVENT	(TMP4	, TMP3)

Some example microcode flows

			,	
EBX_30	:= MOVE_DSZN	(CONST_0	, CONST_0)
ECX_30	:= MOVE_DSZN	(CONST_0	, CONST_0)
ED I 30	:= MOVE_DSZN	(CONST_0	, CONST_0)
ES I 30	:= MOVE_DSZN	(CONST_0	, CONST_0)
ESP_30	:= MOVE_DSZN	(CONST_0	, CONST_0)
EBP_30	:= MOVE_DSZN	(CONST_0	, CONST_0)
EDX_30	:= OP_032	(CONST_0e_18c	, CONST_0e_18c) IMM: 18c
REG_34	:= OP_52F	(0×1F0	, 0×1F0) IMM: 1f0
EDX_30	:= OR_DSZN	(EDX_30	, 0×060) IMM: 60
DH	:= MOVE_DSZ8	(0×006	, 0×006) IMM: 06
REG 37	:= MOVE DSZN	(0×0FF	, 0×0FF) IMM: ff U2: 20

Future work

- Complete ROM extraction:
 - Finish capturing all ROM blocks (3/6 done)
 - Determine uopcode[6] column
- Map out more opcodes and registers
- Determine Entry Point PLA input format and extract macro-op entry points
- Find constant ROM
- Map out CRBUS addresses
- Determine update encryption mechanism

Acknowledgements

- Martijn Boer (<u>https://www.flickr.com/people/sic66/</u>)
 - Provided me with the high-resolution scans of the ROM and PLAs
- RevSpace (Hackerspace The Hague)
 - for being a community full of great ideas and a place to work on such complicated projects.
- Alyssa Milburn (@noopwafel)
 - \circ who keeps taunting me with crazy project ideas.
- Peter Cywinski
 - whose auction site trawling got me the microscope upgrades that made this possible
- Many others

