
8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 1

Static Analysis of C++
Virtual Tables (from GCC)

James Rowley, Marcus Engineering, LLC

Hardwear.io USA 2023

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 2

•While I’m introducing the workshop…

•Download Ghidra:
•https://ghidra-sre.org/

•Download the workshop files:
• https://github.com/pixelfelon/GCCVTSRE_ghidraDemo

Step One – Get Set Up

https://ghidra-sre.org/
https://github.com/pixelfelon/GCCVTSRE_ghidraDemo

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 3

•About a year ago, my team was working on a
software reverse engineering project.
•ARM/Linux embedded system.

• Trying to suss out how a certain digitally-tagged
item was being tracked.

•We got the firmware out of the control console,
and dug in in Ghidra…

Welcome!

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 4

•Then we saw a lot of these jumps to computed
addresses: C++ virtual calls.

• Function calls, but we didn’t know where the
functions were.

•Tried to get C++-specific decompilation tools to
work, and just couldn’t.

• Looked into plugins for both Ghidra and IDA Pro.

Stuck on Indirection…

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 5

Virtual vs. Direct Calls

• Direct • Virtual

main

Sub1 Sub2

SSub6 SSub7 SSub8

I/O

main

Sub2

SSub7

?

?

?

I/O?

?

?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 6

•Believed that it was impractical to manually
analyze virtual calls and related mechanisms.

•Hence remaining focused on C++ tools.

•Or, doing live debugging to see the call stack.

•But after weeks of no progress…?

• I pushed forward on manual analysis – turns out,
it’s actually very practical.

Better Try Something Else…

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 7

WHAT WE’RE DOING TODAY

main

Sub2

SSub7

?

?

?

I/O?

?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 8

WHAT WE’RE DOING TODAY

main

Sub2

SSub7

I/O

VSub8

VSub6

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 9

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 10

•C, especially pointers.

•And how C may be translated to machine code.

•A basic understanding of object-oriented
programming.

•Knowing C++ would help.

•Basic Ghidra usage.

What You Should Know

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 11

• Introductory Example
•Caveats, etc.
•Virtual Table Primer
•Structure of Primary VTables
•Structure of Secondary VTables
•Typeinfo and Hierarchy
•Miscellanea
•Exercise (time permitting)

Agenda

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 12

•One day, you’re decompiling some code in Ghidra.

•You see this:
FUN_01234567(param_1);

• Ok, easy, it’s calling some function at 0x01234567.

•But you also see this:
(**(code **)(*param_1 + 0x8))(param_1);

• What’s it actually calling..?

Decompiling some code…

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 13

• This is the decompilation of a binary originally written in C++.
You’re looking at calls to what were originally methods on a
C++ class.
• And as it so happens, that class has virtual methods.

• With an empty structural type for this, Ghidra will decompile
a virtual call like so:

(**(code **)(*(int *)this + 0x8))(this);

• What’s getting called???
• The function pointer at the address stored in “this” plus eight...?
• Yep, it’s a virtual function.

So what is it?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 14

•Original decompilation:
(**(code **)(*(int *)this + 0x8))(this);

•Now define a type for this:
typedef struct {
 void ** vtable;
} Base;

•New decompilation:
(*(code *)(this->vtable[1]))(this);

EXAMPLE – Annotation I

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 15

(*(code *)(this->vtable[1]))(this);

•Now define a type for this->vtable:
typedef struct {
 code * foo;
 code * bar;
} Base::vtable-funcs;

•Final decompilation:

(*this->vtable->bar)(this); – Nice!

EXAMPLE – Annotation II

typedef struct {
 Base::vtable-funcs
 * vtable;
} Base;

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 16

•(*this->vtable->bar)(this); is a lot easier
to understand than the original was…
•But it’s probably not how the original code looked.
•More like… bar();.

•But Ghidra decompiles C, not C++.
•As is the case with most decompilation tools.
• So, we need to reimagine all of C++’s features in

terms of pure C.
•Which is actually pretty easy! Just very verbose.

C++ in terms of C

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 17

Prefacing
Miscellanea
The important odds and ends!

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 18

• It’s all about mangled names.
• _ZN3Foo3barEv or something like that.
•Check the ABI, very intricate scheme.

•Will have lots of linker symbols exhibiting this
sort of mangling.
• If there are no linker symbols, (fewer of) these

names can still be found as const strings.
• If on a non-GCC platform, the mangling may look

very different, but should still be present.

How to identify a C++ binary?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 19

•These techniques were originally developed on 32-
bit ARM binaries compiled with GCC 4.8/4.9.
• They seem to be generally applicable to other versions

and platforms of GCC.

• Indeed, our exercise today will be on x86_64.

•Ghidra seems to be better at picking up on objects
and vcalls on x86 than on ARM.
• So, the initial decompilation of an x86 binary may be

different and more complete than shown here.

Some Caveats

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 20

•GCC uses the Itanium C++ ABI.
• The Itanium ABI is not universal on x86.

• That’s why this workshop is about GCC.
• MSVC binaries could be completely different.

• I haven’t checked.
• But, Itanium ABI is more common on other platforms.

• It’s the official standard for ARM.

• Also, I’ve never really developed in C++…
• But I have a lot of experience in C, and OOP in Python.
• So, I learned large portions of the C++ language from the

ABI and decompiled binaries.

More Caveats

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 21

• The Itanium C++ ABI Specification is an invaluable
resource for working with vtables emitted by GCC.
• Particularly Section 2.5, “Virtual Table Layout”.

• https://itanium-cxx-abi.github.io/cxx-abi/abi.html
• This presentation cannot and will not supplant it!

• Yes, that’s the Itanium C++ ABI. It is widely used, even though nobody
uses Itanium anymore.
• The ARM ABI and GNU GCC both specifically call it out.
• Though, GCC extends it a bit… good luck there!

Hit the books!

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 22

•We will not be discussing classes with virtual bases.
• They complicate static analysis.
• They don’t seem to be very common.

• We have actually dealt with a few now, it’s not that bad.

• See Category 3/4 vtables in Section 2.5.3 of the ABI.

• So, the vtables will be fairly simple, and we’ll never deal with
construction vtables or VTTs.

We’re not covering the whole ABI!

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 23

•Object

•Class

•Concrete Type
•Most-Derived Class

•Virtual Method

•Pure Virtual Method

•Thunk

•Emitted
•Binary Code/Data

•Virtual Base

•Ghidra

Key Terms

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 24

•Object Data – the data actually stored in
memory for an instance of an object.
• i.e., all non-static fields.

•Representable as a C struct.

•Subobject – a section of object data belonging to
a particular class in the object’s type hierarchy.

Key Terms – Quick Glossary

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 25

• Object – an instance of a class.

• Class – the type of an object.

• Most-Derived Class – when considering a specific object’s class hierarchy, the
single class which is not a base of any other class. Its “type”, more or less.

• Object Data – the data actually stored in memory for an instance of an object.
• i.e., all non-static fields.
• Representable as a C struct.

• Subobject – a section of object data belonging to a particular class in the
object’s type hierarchy.

• Virtual Method – a method on a class, which can be overridden in a subclass.
• i.e. what code is called depends on the object type.
• Can be overridden (non-virtual methods cannot be).

• Thunk – a very small function which has the sole purpose of calling another
function. One might also call it a “shim”.

Key Terms – Glossary

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 26

• Emitted – actually turned into machine code or data by the compiler.

• Pure Virtual Method – a virtual method which does not have an
implementation in its containing class.
• Calling it would be a fatal error (fine to call an override, of course).

• Virtual Base – a base whose subobject will exist exactly once in the most-
derived class, regardless of how many times it appears in the hierarchy.
• We’re not going to deal with these!

• Typeinfo Structure – some static, constant data emitted by the compiler which
describes a type (usually a class).
• Describes a type sufficiently for comparing it to other types…
• But not sufficiently for full runtime reflection (darn!).

• Ghidra – software reverse-engineering framework with disassembler and
decompiler.
• It’s our tool for this workshop.

Key Terms – Glossary

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 27

The Basics
What’s a VTable?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 28

•C++ allows for “virtual” functions that can be
overridden in subclasses, changing behavior.
• And objects of a derived type can be treated as if they

were objects of the base type.

•VTables are the fundamental mechanism that allows
subtype polymorphism in C++ (in GCC).
•So at runtime, somehow, obj->bar(); needs to call
Base::bar or Derived::bar depending solely on
the type of obj.
• This is what obj’s VTable accomplishes.

Why have “VTables”?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 29

•Virtual Table – an array of function pointers to the
implementations of all virtual methods in a class.

• e.g., base methods, method overrides, concrete
implementations of pure virtual methods.

• Also, contains information about the layout of subobjects,
and type hierarchy.

• Constant, emitted by the compiler; used at runtime.

What is a “VTable”?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 30

•Not all classes have a vtable.
• To have a vtable, the class must:

• Declare a virtual function, or
• Inherit a virtual function.

• Doesn’t matter if bases are declared virtual or not; if a base
has a virtual function:
• It has a vtable.
• Its inheriting class will inherit that virtual function.

• It may or may not override it.

• Its inheriting class will have a vtable.

When will you see a VTable?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 32

Basic VTables
(Classes with at most one non-virtual base)

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 33

• For now, let’s just focus on the
Primary VTable:

• “Offset to top” – zero.

• Typeinfo pointer.
• To compiler emitted typeinfo

structure for the class.

• Function pointers.
• To methods which will accept

object data from exactly this class
as their this parameter.

• For x86_64, pointers are on an 8-
byte alignment.

What Do VTables Look Like?

Primary VTable

(Secondary VTable)

(Secondary VTable)

…

offset to top

typeinfo pointer

function pointer

function pointer

function pointer

function pointer

…

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 34

• Every class with virtual
functions has one.

• Virtual functions appear in
source order.
• Virtual functions of the primary

base classes appear first, in
their original order.

• Virtual destructors get two
entries – the base- and
complete-object destructor, in
that order.

Primary VTables – Layout

Primary VTable

offset to top (0)

Base’s typeinfo pointer

vfunc: foo

class Base {
 virtual void foo ();
 virtual void bar ();
 unsigned int b;
 virtual ~Base() {}

vfunc: bar

vfunc: ~Base (D1/D2)

vfunc: ~Base (D0)

}

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 35

•VTables can have structure type annotations
applied in Ghidra.
•Once you’ve taken the time to make them, they

propagate to everywhere that class is used, and
provide more meaningful decompilation.

•Only bother with the function pointer array.
•Nothing really references the RTTI before it.

Typing VTables as C Structures

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 36

• The VTable will have just foo and bar.

typedef struct {
 void (*foo)(Base * this);
 void (*bar)(Base * this);
} Base::vtable-funcs;

Base’s VTable as a C Structure

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 37

Demo in Ghidra

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 41

The
Not-So-Basics
Secondary VTables

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 42

• The derived class will have a
vtable for each base class with
virtual functions.

• If there’s multiple such bases,
there’s a secondary vtable.
• In the example to the right,

“Base-in-Derived” is the official
name for such vtable.

Secondary VTables – When?

Primary Vtable – Derived (and Quirk)

Secondary Vtable – Base-in-Derived

class Base {
 virtual void foo (void);
 virtual void bar (void);
 unsigned int b;
}

class Quirk {
 virtual void quirk (void);
 void * Q;
}

class Derived : Quirk, Base {
 virtual void baz (void);
 void bar (void);
 unsigned char d;
}

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 43

Secondary VTables – What?

class Base {
 virtual void foo (void);
 virtual void bar (void);
 unsigned int b;
}

class Quirk {
 virtual void quirk (void);
 void * Q;
}

class Derived : Quirk, Base {
 virtual void baz (void);
 void bar (void);
 unsigned char d;
}

Primary VTable (Derived, including Quirk)

offset to top (0)

Derived’s typeinfo pointer

vfunc: quirk = Quirk::quirk

Secondary VTable (Base-in-Derived)

offset to top (-16)

Derived’s typeinfo pointer

vfunc: foo = Base::foo

vfunc: bar = Derived::bar

vfunc: bar = (thunk to) Derived::bar

vfunc: baz = Derived::baz

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 44

Secondary Vtables – Why?

class Base {
 virtual void foo (void);
 virtual void bar (void);
 unsigned int b;
}

class Quirk {
 virtual void quirk (void);
 void * Q;
}

class Derived : Quirk, Base {
 virtual void baz (void);
 void bar (void);
 unsigned char d;
}

Derived obj;

assert((void *)dynamic_cast<Derived *>(&obj)

 == (void *)dynamic_cast<Base *>(&obj));

// Would fail!

vtable * vtable

Quirk Object Data Layout

Quirk *

vtable * vtable

unsigned int b

unsigned char d

Base Object Data Layout

Base *

Quirk *, Derived *

Base * vtable * vtable

void * Q

void * Q

unsigned int b

vtable * vtable

Derived Object Data Layout

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 45

• It’s all about the layout of the object data.
•New fields go last, but…
•Only one base subobject can go first.

•Need some kind of adjustment to Derived if
we pass it to something expecting a Base.
•Virtual functions are still overridden, though.
• So that adjustment has to be undone.

Secondary Vtables – Why?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 46

•The this pointer needs adjustment between
Derived* and Base*.
•Consumers of Base* need a Base*, not Derived*.
• The implementations of Derived’s methods need a
Derived*, even if the caller has it as a Base*.

•The secondary vtable makes it all work.
• It can point to special code to handle this…

Secondary Vtables – Why?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 47

•When converting to Base*, you get a pointer to
the Base subobject, with its secondary vtable.

•The secondary vtable contains pointers to thunks,
instead of the actual methods on Derived.

• These thunks accept a Base*, convert it back to
a Derived*, and call the associated method on
Derived.

Secondary Vtables – How?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 48

Notice The Offset

Secondary VTable (Base-in-Derived)

offset to top (-16)

Derived’s typeinfo pointer

vfunc: foo = (thunk to) Base::foo

vfunc: bar = (thunk to) Derived::bar

unsigned int b

unsigned char d

Quirk *, Derived *

Base * vtable * vtable

void * Q

vtable * vtable

Derived Object Data Layout

16

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 49

•The secondary vtable contains pointers to
thunks, instead of the actual methods.

•Consumers don’t need to adjust the
this pointer at all, because the thunks will.

•So, consumers don’t need to consider an
object’s concrete type for overriding to
work.

Secondary Vtables – Why, really?

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 50

• In the applications we were reverse engineering,
probably half of the classes we encountered had
secondary vtables.

•They really liked to use Qt for everything, but
not base interface classes.
• So you inherit from QObject, and then the

interface, each with virtual functions.

Quite Common…

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 51

Demo in Ghidra

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 54

•You’ve identified a Derived* obj.
• In the binary, it may at any moment get upcasted

into a Base*!
• Their layout is not compatible, nor is the layout of

their vtables.

•So, if obj gets manipulated, and then a vcall
happens… make sure you know what type it is
right then, so you know which vtable it’s using.
• Sometimes Ghidra won’t recognize that an operation has changed the type of

a variable. So you can’t change the before/after type separately. In this case,
just use lots of comments.

Keep Track of Types!

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 55

Type
Hierarchy
(and how to figure it out)

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 56

•Constant “RunTime Type Information” emitted
by the compiler for every class.
•Required by the ABI.

•Contains links to its
base classes.

•Contains the name of the class.
• That’s really helpful in a stripped binary!

Typeinfo Structures

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 57

•Every vtable has a pointer to its class’s typeinfo.
• So, you can propagate the name from the typeinfo.

•Two particularly helpful varieties:
• __si_class_type_info – for single base.
• __vmi_class_type_info – for multiple bases.

•Those link to the typeinfo of the base classes.
•And of course, they name the class.

Typeinfo Structures

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 58

typedef struct {
 void ** vtable;
 const char * name;
 typeinfo * base_type;
} __si_class_type_info;

typedef struct {
 void ** vtable;
 const char * name;
} __class_type_info;

typedef struct {
 void ** vtable;
 const char * name;
 vmi_flags flags;
 uint32_t base_count;
 base_class_type_info[] base_info;
} __vmi_class_type_info;

typedef struct {
 bool non_diamond_repeat:1;
 bool diamond_shaped:1;
 int :2;
 bool flags_unknown:1;
 int :27;
} vmi_flags;

typedef struct {
 __class_type_info * base_type;
 offset_flags offset_flags;
} base_class_type_info;

typedef struct {
 bool virtual:1;
 bool public:1;
 int offset:30;
} offset_flags;

Typeinfo Structures - Reference

• Simple C layouts of C++ ABI class typeinfos:

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 59

• Sometimes, there are no linker symbols…

• The property that each vtable has a pointer to a typeinfo,
and each typeinfo has a vtable too, is very useful!
• Start by finding and labelling the standard typeinfo vtables.
• __class_type_info::vtable-funcs
• __si_class_type_info::vtable-funcs
• __vmi_class_type_info::vtable-funcs

• Important: put a label at the start of the function
pointers, since that’s what typeinfo objects will point to.

•Now references to these typeinfos will be clearly visible.

Discovering VTables

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 60

VTable (primary)

• Zero

•Absolute pointer
• (To typeinfo)

•One or more absolute
pointers
• (To virtual functions)

Typeinfo

•Absolute pointer
• (To typeinfo’s vtable)

•Absolute pointer
• (To type name string)

•Maybe more pointers
• (To parent typeinfos)

What VTables and Typeinfo Look Like

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 61

•Const data coming from a single translation unit
is usually all close together.
• Including vtables and typeinfos.
• Same goes for program text?

•So if you find something interesting, the nearby
data is probably related.

Proximity in the Binary

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 62

•Part of what we had to analyze was a huge
binary with no linker symbols.

•Being able to recognize that some things were
related because they were nearby was super
helpful – it multiplies what you learn.

Proximity is key.

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 63

•Once you’ve found the typeinfo, the class name,
and the vtable, you should label it.

• I like to use these names:
•<class>::typeinfo, ::typeinfo-name

•<class>::vtable, ::vtable-funcs

•Now everywhere those are used, you have a nice
descriptive name.

Naming the Const Data

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 64

• If you’ve got a class with some pure virtual
methods, you can’t tell what they do.

•But you can use the typeinfo to look for a
subclass that implements them…

•Also just generally good to annotate vtables up
and down the inheritance tree.

Working Up the Chain

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 65

Demo in Ghidra

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 66

•We found mangled names as const strings.
• Like “4Base”.

•These names were used in typeinfo structures.

•The typeinfo structures were used in vtables.

•And finally, the vtables were used in
constructors.

Demo Recap

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 68

Miscellanea
(subtitle)

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 69

• If the return type is non-trivial, the this pointer
may be preceded by a RETURN pointer.
•Also for constructors with virtual bases.

•Also, double words – check your ABI. Ghidra may
well get it wrong; it certainly does on ARM.

When this isn’t first.

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 70

• Instances of template classes will frequently have mutually-
compatible object data.
• It may even be guaranteed by the definition of the class.

• It’s tempting to just make one struct in Ghidra, and typedef the
instantiations to it!

• This will break the decompiler!
• It cannot seem to handle “this” (specifically from __thiscall)

pointing to anything other than a struct.
• Worse, it can’t handle that scenario anywhere in the call tree…

• Instead, I suggest:
• Making the one struct with the concrete object layout.
• Keeping all the template instantiation object data structs.
• Adding to each such struct, the layout struct as its sole member.

Template Classes in Ghidra

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 71

• Sometimes you’ll see a mangling that just does not make
sense, according to the “official” ABI.
• Of course, it’s hardly official, it’s just a community-maintained

GitHub repo.

• Known extensions:
• L at the start of a function mangling:

• Indicates a static function.
• e.g.: “_ZL3foov” → static void foo (void);

• C4 as a constructor name:
• Indicates a “base-object allocating constructor”.
• e.g.: “_ZLN3FooC4Ev” → class Foo : Base { __? Foo () {} }
• Well, the C++ half of that is notional. But you get the idea.

GCC Extensions to Itanium C++ ABI

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 72

• I’ve typeset the ABI, which in its native form is
one big webpage.
•https://github.com/itanium-cxx-abi/cxx-

abi/files/8994612/Itanium.CXX.ABI.June2022.pdf

•Easier to print, easier to bookmark.

Itanium C++ ABI – Available in PDF!

https://github.com/itanium-cxx-abi/cxx-abi/files/8994612/Itanium.CXX.ABI.June2022.pdf
https://github.com/itanium-cxx-abi/cxx-abi/files/8994612/Itanium.CXX.ABI.June2022.pdf

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 74

Activity
SRE Challenge

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 75

•A little CLI “hashing” program.

•Enter some text, get a number.

•What algorithm is it using?

•Stripped of linker symbols.
•But there are library imports.

Final Demo/Activity

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 76

•The algorithm is non-standard.
•Won’t have any luck googling the constants…

• I’ve had a colleague randomize some details, so
this isn’t totally rehearsed.
• It’s been a couple weeks and I don’t remember

what I wrote. Close enough!

Just to make it interesting…

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 77

Final Demo/Activity in Ghidra

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 78

Thank you for coming!

Thanks for coming!

8/12/2023 v1.5 © 2023 Marcus Engineering, LLC 79

	Introduction
	Slide 1: Static Analysis of C++ Virtual Tables (from GCC)
	Slide 2: Step One – Get Set Up
	Slide 3: Welcome!
	Slide 4: Stuck on Indirection…
	Slide 5: Virtual vs. Direct Calls
	Slide 6: Better Try Something Else…
	Slide 7: What we’re doing today
	Slide 8: What we’re doing today
	Slide 9
	Slide 10: What You Should Know
	Slide 11: Agenda

	Introductory Example
	Slide 12: Decompiling some code…
	Slide 13: So what is it?
	Slide 14: EXAMPLE – Annotation I
	Slide 15: EXAMPLE – Annotation II
	Slide 16: C++ in terms of C

	Pre-Miscellanea
	Slide 17: Prefacing Miscellanea
	Slide 18: How to identify a C++ binary?
	Slide 19: Some Caveats
	Slide 20: More Caveats
	Slide 21: Hit the books!
	Slide 22: We’re not covering the whole ABI!
	Slide 23: Key Terms
	Slide 24: Key Terms – Quick Glossary
	Slide 25: Key Terms – Glossary
	Slide 26: Key Terms – Glossary

	Virtual Table Primer
	Slide 27: The Basics
	Slide 28: Why have “VTables”?
	Slide 29: What is a “VTable”?
	Slide 30: When will you see a VTable?

	Primary VTable Structure
	Slide 32: Basic VTables
	Slide 33: What Do VTables Look Like?
	Slide 34: Primary VTables – Layout
	Slide 35: Typing VTables as C Structures
	Slide 36: Base’s VTable as a C Structure
	Slide 37: Demo in Ghidra

	Secondary VTable Structure
	Slide 41: The Not-So-Basics
	Slide 42: Secondary VTables – When?
	Slide 43: Secondary VTables – What?
	Slide 44: Secondary Vtables – Why?
	Slide 45: Secondary Vtables – Why?
	Slide 46: Secondary Vtables – Why?
	Slide 47: Secondary Vtables – How?
	Slide 48: Notice The Offset
	Slide 49: Secondary Vtables – Why, really?
	Slide 50: Quite Common…
	Slide 51: Demo in Ghidra
	Slide 54: Keep Track of Types!

	Type Hierarchy
	Slide 55: Type Hierarchy
	Slide 56: Typeinfo Structures
	Slide 57: Typeinfo Structures
	Slide 58: Typeinfo Structures - Reference
	Slide 59: Discovering VTables
	Slide 60: What VTables and Typeinfo Look Like
	Slide 61: Proximity in the Binary
	Slide 62: Proximity is key.
	Slide 63: Naming the Const Data
	Slide 64: Working Up the Chain
	Slide 65: Demo in Ghidra
	Slide 66: Demo Recap

	Miscellanea
	Slide 68: Miscellanea
	Slide 69: When this isn’t first.
	Slide 70: Template Classes in Ghidra
	Slide 71: GCC Extensions to Itanium C++ ABI
	Slide 72: Itanium C++ ABI – Available in PDF!
	Slide 74: Activity
	Slide 75: Final Demo/Activity
	Slide 76: Just to make it interesting…
	Slide 77: Final Demo/Activity in Ghidra
	Slide 78: Thanks for coming!
	Slide 79

