BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Hardwear.io USA 2023

Marco Casagrande and Daniele Antonioli (EURECOM, FR)

EURECOM s o p h i a A n t i p o l i s

hardwear.io

Daniele Antonioli

Assistant Professor at EURECOM (FR)

Research interests:

- Wireless Communication (Bluetooth, Wi-Fi, ...)
- Embedded (IoT, cars, ...)
- Mobile (Android, iOS, ...)
- Cyber-Physical Systems (ICS)

We are hiring PhDs, and Postdocs

Email: <u>antonioli.daniele@gmail.com</u>

Website: <u>https://francozappa.github.io</u>

2nd time speaker at HWIO, <u>Bluetooth O-days</u> talk in 2020

Marco Casagrande

PhD student at EURECOM (FR)

Research Topics:

- Bluetooth / Bluetooth Low Energy
- Internet-of-Things
- Android

Email: <u>marco.casagrande@eurecom.fr</u>

Talk Outline

- Intro on proprietary fitness tracking ecosystems
- Reverse engineering (RE) methodology
- Xiaomi FTE vulns and attacks
- <u>BreakMi</u> OS toolkit and (live) demos
- Fitbit FTE vulns and attacks
- Countermeasures and responsible disclosure

Acknowledgements

Eleonora Losiouk

Assistant Professor at University of Padova (IT)

Mauro Conti Professor at University of Padova (IT)

Mathias Payer Associate Professor at EPFL (CH)

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

INTRODUCTION

Fitness Tracking Ecosystem

Fitness Tracker (FT)

- Wearable IoT device with sensors
 - Monitors **sensitive** data
 - E.g., steps and heart rate
 - Controls smartphone lock screen
 - Displays SMSes and alerts
 - BLE connection to smartphone app

FT Companion App

- Interact with the FT
 - Connect
 - Read sensor values
- Gateway to the backend IF

FT Backend

- Internet-accessible infrastructure
 - Registered users
 - Registered (paired) devices per user
 - Backups
 - FT firmware

Bluetooth Low Energy (BLE)

- De-facto standard protocol for IoT devices
 - E.g., trackers, watches, ...
- Device discovery
 - Scanner (App)
 - Advertiser (FT)
- Connection establishment
 - Central aka Initiator (App)
 - Peripheral aka Responder (FT)
 - Client-server data model (GATT)

BLE Scanning and Advertising

- App (scanner) scans for advertisers
- FT (advertiser) periodically **broadcast** presence
- Advertising packets
 - Contain data to **connect** to the advertiser
 - E.g., BLE MAC address, device name, list of service UUIDs, manufacturer's data

BLE Generic Attribute Profile (GATT)

- GATT defines client-server communication
 - Hierarchy format of services and characteristics
 - Each one identified by UUID
- Service = **feature** granted by GATT server
 - E.g., Heart Rate Service
 - **Collection** of characteristics

BLE Generic Attribute Profile (GATT)

- Characteristic = single **data point**
 - E.g., Heart Rate Measurement Characteristic
 - Defined by Attribute Profile (ATT)
- ATT defines how data is represented/interacted
 - Characteristic value
 - Characteristic **read/write/notify** permissions

BLE Link-Layer Security

• Pairing

- Agree on a long-term pairing key
- Usually happens only once

• Session establishment

- Derive a session key from the pairing key
- Encrypt the communication using the session key

• Vendors can

- Enable/disable BLE link-layer security
- Provide application layer security on top

FT Ecosystem Security (1)

- Security risks
 - E.g., **tamper** with BLE packets
 - E.g., **data loss** due to factory reset
- Privacy risks
 - E.g., leaking sensitive **health data** (e.g., heart rate)
 - E.g., reading **2FA** messages

FT Ecosystem Security (2)

- **Proprietary** protocols spoken over BLE (or Wi-Fi)
 - Unknown custom security mechanisms
 - No public documentation
 - No test environment or tools available
- Need to **reverse-engineer** Xiaomi protocols to assess their security

RE METHODOLOGY

RE Targets

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

BLE Traffic Analysis

• Enable Android **BT HCI snoop log**

- Capture file with BLE traffic
- Enable Wireshark live capture

[@ Desktop]\$ adb shell su -c "'nc -s 127.0.0.1 -p 8872 -L system/bin/tail -f -c +0 data/misc/bluetooth/logs/btsnoop_hci.log'" * daemon not running; starting now at tcp:5037 * daemon started successfully

• Or use adb bugreport my_report

BLE Traffic Analysis - Advertising

- FTs periodically advertises if not connected
- Random **BLE MAC address**
 - Changes upon factory reset
 - App looks address to check
 If already paired or not

BLE Traffic Analysis - GATT

- Xiaomi GATT custom services
 - E.g., 0xFEE0, 0xFEE1

• Heart Rate and Steps

- Protected by Xiaomi auth
- GATT READ NOT PERMIT

BONDED	ADVERTISER	MI : EF:7	SMART BAND 5 72:72:24:8A:B2	×
CONNECTED NOT BONDED	CLIE	NT	SERVER	* *
Heart Rate UUID: 0x180D PRIMARY SERVICI	E			
Heart Rate Measurement UUID: 0x2A37 Properties: NOTIFY Descriptors:				<u>***</u>
Client Character UUID: 0x2902	ristic Configuratio	on		+
Heart Rate Co UUID: 0x2A39 Properties: REA	p ntrol Point D, WRITE		<u>*</u>	<u> </u>
Unknown Servic UUID: 0xFEE0 PRIMARY SERVICI	e			
Unknown Servic UUID: 0xFEE1 PRIMARY SERVICE	e			

BLE Traffic Analysis - Custom Packets

- **Binary** data payload inside BLE packets
- Custom **opcodes**
 - Pairing Init: 0100
 - Pairing Complete: 100101
 - Pairing Key: 0100||Key
 - User Confirmation: 108301
 - Auth Chal: 100201||Chal or 108201||Chal
- Protocol **dissectors** to automate detection

Firmware Analysis

- Retrieving FT **firmware** is not trivial
 - Debug port or intercept BLE firmware update
- Static code analysis with Ghidra/IDA
 - Lengthy, **stripped** binaries, manual work
- Challenging to **debug** dynamically

App Code Analysis

- Extracting app.**apk** from Android app is trivial
 - $\circ\,$ adb shell pm path com.example.someapp
 - adb pull path/to/apk path/to/destination
- Static code analysis with decompilers
 - Outputs accurate Java decompiled code
- Dynamic analysis is also **possible** Dynamic binary instrumentation

App Static Analysis (1)

- App features and capabilities
 - Permissions (normal, dangerous)
 - Components (activities, services, receivers, providers)
 - Resource files and strings.xml
 - Networking (IPs, URLs, domains)

App Static Analysis (2)

- Code decompilation
 - Crypto/security **API calls**
 - E.g., Cipher, MessageDigest, Random
 - Logic of Xiaomi **custom classes**
 - E.g., HMBaseProfile, HMWebBindInfo, HMDeviceWebAPI
 - Presence of **obfuscation**

App Dynamic Binary Instrumentation

- Dump and hook code at runtime
 - Classes, methods, system calls, ...
- Monitor functions parameters and return values
 - **Compare** BLE traffic data with input/output values
 - Also **inject** values and logic inside such functions

• Print **stack traces**

 E.g., going backwards to find which Xiaomi custom class invoked AES-ECB

Wi-Fi Traffic Analysis

- Intercept web traffic with Xiaomi backend
 - Deploy HTTPS proxy
 - Man-in-the-middle the traffic to read it
- Multiple Xiaomi **endpoints**
 - o account.xiaomi.com/oauth2/authorize
 - o account.huami.com/v2/client/login
 - o api-mifit-de2.huami.com/v1/device/binds.json

XIAOMI FT ECOSYSTEM SECURITY EVALUATION

Xiaomi FTs

Xiaomi Companion Apps

Zepp Life (formerly Mi Fit) Zepp (formerly Amazfit)

Xiaomi Security Protocols

- BLE link-layer security?
 - **Disabled** by Xiaomi, despite device support
 - No link-layer confidentiality, integrity, and authenticity
- Xiaomi application layer security?
 - Custom binary protocols (Pairing, ...)
 - We found critical vulnerabilities (BLA)
 - \circ And exploited them (BLA)
- Now we present them in detail

Xiaomi Pairing v2

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

36/88
Xiaomi Pairing v2

Xiaomi Pairing v2 (cont)

Xiaomi Pairing v2 (cont)

Xiaomi Communication

Xiaomi Communication

Proximity Attacker and Attacks

Proximity Eavesdropping

Proximity Eavesdropping

Proximity Tracker Impersonation

Proximity Tracker Impersonation

Proximity App Impersonation

Proximity App Impersonation

Proximity Man-in-the-Middle

Proximity Man-in-the-Middle

Remote Attacker and Attacks

Remote Eavesdropping

Remote Eavesdropping

Remote App Impersonation

Remote App Impersonation

Evaluation Setup (Trackers)

Tracker	Release Year	Pairing Version	Bluetooth Version	LE Secure Conn.	Link-Layer Security
Mi Band 2	2016	1	4.2	X	~
Mi Band 3	2018	1	4.2	X	~
Cor 2	2019	1	4.2	X	
Mi Band 4	2019	2	5.0	~	~
Mi Band 5	2020	2	5.0	~	~
Mi Band 6	2021	2	5.0	~	~

Evaluation Setup (Companion Apps)

Арр	App Version	Year	OS
Zepp Life (formerly Mi Fit)	4.8.1	2020	Android
Zepp (formerly Amazfit)	5.9.2	2021	Android

Evaluation Results

	Proximity Attacks			Remote Attacks		
	Trac Imp.	App Imp.	MitM	Eavesdr.	App Imp.	Eavesdr.
Zepp Life app	n/a	v	~	v	v	n/a
Zерр арр	n/a	v	v	v	v	n/a
Mi Band 2	~	n/a	~	v	n/a	~
Mi Band 3	~	n/a	~	v	n/a	~
Amazfit Cor 2	~	n/a	~	v	n/a	v
Mi Band 4	 ✓ 	n/a	~	v	n/a	v
Mi Band 5	~	n/a	v	v	n/a	v
Mi Band 6	~	n/a	~	~	n/a	~

Evaluation Results (Android Versions)

Smartphone	Android Version	Remote Attacks		
		Eavesdropping	App Impersonation	
Pixel 4A	12 (23.58%)	*	*	
Pixel 2XL	11 (27.96%)	 ✓ 	 	
Pixel 2XL	10 (20.98%)	 	 	
Galaxy J5	9 (10.58%)	 	 	
Redmi 5 Plus	8 (8.08%)	~	 	
Galaxy S5	6 (2.25%)	 ✓ 	 ✓ 	

* Requires dangerous runtime permission BLUET00TH_CONNECT

BREAKMI TOOLKIT

BreakMi Toolkit

- BreakMi
 - **Proximity** attacks via NodeJS
 - **Remote** attacks via Android app
 - Xiaomi protocol **dissectors**
 - Frida DBA **hooks** for Zepp and Zepp Life
 - Links to our <u>attacks demos</u>
 - **Open-source** via <u>BreakMi GitHub repo</u>

Proximity Attacks Implementation

- Bleno and Noble (NodeJS modules)
 - BLE Peripheral to spoof tracker
 - BLE Central to spoof app
 - Must run Node version 8.9.0 to work (nvm use 8.9.0)
 - Recommend to install @abandonware/{bleno, noble}

Proximity Impersonation Attacks

- BLE address spoofing
 - Vendor-specific **bdaddr** (CSR8510 A-10 Controller)
- Implement tracker's GATT server
 - E.g., services, characteristics, allowed operations
- Perform service and characteristic discovery
 - Required to send read/write requests to tracker

Proximity Man-in-the-Middle

- Impersonate app and tracker at the same time
 Requires two BLE interfaces
- Sockets to forward packets from fake tracker to fake app, and vice versa

Proximity Man-in-the-Middle Demo

Remote Attacks Implementation

- Malicious Android app written in Java
 - Exploit Android BLE API
 - All Android apps can read the entire BLE traffic
 - Need for application-layer encryption!

Remote Eavesdropping Demo

FITBIT FT ECOSYSTEM SECURITY EVALUATION

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Fitbit FT Ecosystem

- Similar ecosystem to Xiaomi
 - Fitness trackers (Charge 2, ...)
 - Companion Android/iOS apps (Fitbit)
 - Backend

• **Proprietary app-layer** protocols over BLE

- Pairing, Authentication, Communication
- BLE link-layer security is **enabled**
 - Unlike Xiaomi

Fitbit Targets

• Charge 2 tracker

- Released in 2014, partially studied
- Random **static** BLE address
- Requires different advertising flag when spoofing
- Fitbit Android app
 - Backend-side pairing (different from Xiaomi)
Fitbit Proprietary Protocols (1)

- Pairing
 - **Pre-shared** device key (DK)
 - Fitbit **backend** generates PK using Salt and DK
 - App receives PK and Salt, used later for Authentication
 - Strong pairing confirmation (**Numeric Comparison**)

Fitbit Proprietary Protocols (2)

- Authentication
 - Mutual authentication
 - Use of Salt, random chals, and a packet counter
 - **MAC** integrity protection
- Communication
 - Real-time mode
 - Normal mode that synchronizes with backend

Fitbit Security Highlights

- Stronger security than Xiaomi
 - Mutual authentication
 - Strong pairing confirmation
- Nonetheless, shares many critical vulnerabilities
 - **No** pairing authentication
 - Authentication is **replayable**
 - **Unencrypted** real-time mode communication

Fitbit Proximity App Impersonation Demo

Fitbit Evaluation Results

	Proximity Attacks				Remote Attacks	
	Trac Imp.	App Imp.	MitM	Eavesdr.	App Imp.	Eavesdr.
Fitbit app	n/a	v	v	† *	v	n/a
Fitbit Charge 2	x	n/a	~	† *	n/a	*

* Only works for real-time unencrypted mode

† Needs link-layer security breach

COUNTERMEASURES AND DISCLOSURE

Countermeasures

- 1. ECDH User-Authenticated Pairing
- 2. PK Authenticated Session with AE crypto
- 3. BLE Link-layer security (defense in depth)

ECDH User-Authenticated Pairing

PK Auth Session with AE crypto

BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

PK Auth Session with AE crypto (2)

BLE Link-Layer Security

- Trackers and app **support** BLE security
 - Pairing and Session establishment
- Xiaomi should **enable** this feature
 - Defense in depth
 - With **limited overhead**

Responsible Disclosures

• Xiaomi response

- Identified as a known *"Lack of encryption"* vulnerability
- When we shared multiple vulns and attacks :(
- \circ $\,$ To be fixed at an undisclosed date
- Fitbit (Google) response
 - Acknowledged the findings, released a **fix**
 - Invited to hack next-gen trackers

This is it! Q&A

- Intro on proprietary fitness tracking ecosystems
- Reverse engineering (RE) methodology
- Xiaomi FTE vulns and attacks
- <u>BreakMi</u> OS toolkit and (live) demos
- Fitbit FTE vulns and attacks
- Countermeasures and responsible disclosure
- More: <u>CHES paper, slides, poster, video</u>