

Evolution of a Side Channel

Benchmarking the Static Power Vulnerability of Four CMOS Generations

Dr.-Ing. Thorben Moos

Crypto Group, ICTEAM Institute, UCLouvain, Louvain-Ia-Neuve, Belgium.

June 2nd, 2023

European Research Council

Acknowledgments

- Most of the work presented in this talk has been accomplished during my PhD at Ruhr-Universität Bochum (RUB) under supervision of Prof. Dr. Amir Moradi
- Funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) through project "NaSCA: Nano-Scale Side-Channel Analysis - Physical Security for Next-Generation CMOS ICs" and through the Cluster of Excellence "CASA - Cyber Security in the Age of Large-Scale Adversaries".
- NaSCA: https://gepris.dfg.de/gepris/projekt/271752544
- CASA: https://gepris.dfg.de/gepris/projekt/390781972

Section 1

Introduction

Energy Consumption in Computing Hardware

- Digital integrated circuits are typically modeled as state machines
- State transitions are triggered by events such as the edges of a clock signal
- Whenever a state transition occurs, energy is consumed as electric charges are moved
- The motion of electric charges creates an electromagnetic field

Charging/Discharging Currents in CMOS Gates

Short-Circuit Current in CMOS Gates

Energy Consumption in Computing Hardware

- Is that all?
- Is energy only consumed if state transitions (= active computations) occur?
- NO!

UCLouvain

Leakage Currents in CMOS Gates

UCLouvain

Leakage Currents in CMOS Gates

Leakage Development

Source: Impact of technology scaling on leakage power in nano-scale bulk CMOS digital standard cells, Z. Abbas and M. Olivieri, Microelectronics Journal, Vol. 45 Issue 2, 2014

Data-Dependency of Leakage Currents

SPICE simulated leakage current of a 2-input NAND gate in 22 nm technology:

Source: Impact of technology scaling on leakage power in nano-scale bulk CMOS digital standard cells, Z. Abbas and M. Olivieri, Microelectronics Journal, Vol. 45 Issue 2, 2014

Data-Dependency of Leakage Currents

A

В

GND

Data-Dependency of Leakage Currents

- The standby power of CMOS chips silently leaks information to potential adversaries about internally stored and processed data
- Again, even data that is not currently processed (=actively computed upon) is leaked
- Measuring a stable/static state allows lower noise measurements
- Operating conditions can be manipulated to increase these leakage currents
- Leakage currents are known to increase significantly as the physical feature size of transistors decreases
- Does this become dangerous at some point?

Section 2

Prototypes

Digital IC Prototyping Timeline

Digital IC Prototyping Timeline

Selected ASIC Prototypes

	90 nm	65 nm	40 nm	28 nm	Sum
Area	3.834 mm ²	3.771 mm ²	2.826 mm ²	1.901 mm ²	12.332 mm ²
Standard Cell Area	2.089 mm ²	1.848 mm ²	1.052 mm ²	0.962 mm ²	5.951 mm ²
Number of Standard Cells	453 850	571 060	917819	1 467 851	3 410 580
Unique Std. Cell Types	467	609	702	843	2621
IO voltage	2.5 V	2.5 V	2.5 V	1.8 V	-
Core voltage	1.2 V	1.2 V	1.1 V	0.9 V	-
Cost	12100€	13220€	17640€	18270€	61 230 €

EUROPRACTICE low-cost MPW (mini@sic) fabrication prices

Chip Pictures

Measurement Boards

Section 3

Setups

Challenges for a Static Power SCA Setup

- Low amplitude of the signal
- Very susceptible to temperature and voltage variations
- Targeted value needs to be stable for some time to accurately measure them (low clock frequency devices, devices with external clock, idling co-processors)
- Larger time consumption per measurement (milliseconds)

Static Power SCA Setup with Oscilloscope

Static Power SCA Setup with Oscilloscope

Custom Low-noise DC Amplifier with Gain of 1000:

Static Power SCA Setup with Oscilloscope

Third-order (Butterworth Pi) LC Low Pass Filter with Cutoff-Frequency of 100 Hz:

Static Power SCA Setup with Oscilloscope

Sample Trace without Low Pass Filter:

Static Power SCA Setup with Oscilloscope

Sample Trace with Low Pass Filter:

Static Power SCA Setup with Oscilloscope

Climate Chamber

Dr.-Ing. Thorben Moos | Evolution of a Side Channel | June 2nd, 2023

Static Power SCA Setup with Sourcemeter

Static Power SCA Setup with Sourcemeter

Post-Processing in Both Cases

Moving Average Filter with adjustable Window Size:

Number of measurements

Number of measurements

Section 4

Previous Inter-Chip Comparison

UCLouvain

Target: 1024-bit HF Register

1024-bit HF Input Register

- filled either with 0s or 1s
- average fanout of 11

90 nm vs. 65 nm ASIC Comparison

Attention: x-axis scale is \times 10 larger in the bottom row!

Dr.-Ing. Thorben Moos | Evolution of a Side Channel | June 2nd, 2023

Data Dependency of HF-Register - 90 nm vs. 65 nm

Technology	Voltage	Temp.	Diff. of Means	Avg. Total Current
90 nm	1.2 V	20 ° C	4.1353 μA	96.5 µA
90 nm	1.2 V	90 ° C	14.4754 μA (×3.50)	771.1 μA (×7.99)
90 nm	1.6 V	90 °C	32.3217 µA (×7.82)	1,867.3 µA (×19.35)

Technology	Voltage	Temp.	Diff. of Means	Avg. Total Current
65 nm	1.2 V	20 ° C	38.4927 μA	154.9 μA
65 nm	1.2 V	90 ° C	263.1579 μA (×6.84)	1,585.1 µA (×10.23)
65 nm	1.6 V	90 ° C	450.6296 μA (×11.71)	3,067.2 μA (×19.80)

Section 5

New Results

Static Power SCA Results

Susceptibility of AES-128 Implementations at 20 °C:

Static Power SCA Results

Susceptibility of AES-128 Implementations at 90 °C:

Static Power SCA Results

Susceptibility of AES-128 Implementations at 90 °C and 50% over-voltage:

Evolution of the Static Power Side Channel

Section 6

Countermeasures

Selected Countermeasures on 28 nm ASIC

PRESENT Core	Area [GE]	Overhead factor	
Unprotected	2 535.00	× 1.00	
Shuffled	2613.00	× 1.03	
Balanced	20 207.00	× 7.97	
Masked	7 233.33	× 2.85	
Masked + Shuffled	9856.33	× 3.89	
Masked + Balanced	58 442.33	× 23.05	

Selected Countermeasures on 28 nm ASIC

Selected Countermeasures on 28 nm ASIC

Data complexities as absolute values and per gate equivalents for all attacks:

PRESENT Core	Area [GE]	DC	DC / GE	Correlation Coefficient
Unprotected	2 535.00	< 100	< 0.039	0.3258
Shuffled	2 613.00	15 000	5.741	0.04069
Balanced	20 207.00	120 000	5.939	0.006618
Masked	7 233.33	23 600	3.263	0.01913
Masked + Shuffled	9 856.33	596 000	60.469	0.002144
Masked + Balanced	58 442.33	2 930 000	50.135	0.0006170

Inform. Theor. Approach: Prime-Field Masking

Conclusion

- There is a direct relationship between the feature size of the technology and the vulnerability of implementations to Static Power SCA Attacks
- Operating conditions can boost the exploitable information through this side-channel across all feature sizes
- Due to the low noise levels, Boolean masked implementations may be susceptible with comparably few traces
- It is dangerous to leave sensitive intermediates behind in a circuit and just wait for the next reset
- Leakage currents should not be neglected any longer when certifying the security of embedded devices

Open Problems and Future Directions

- Practical comparison to FD-SOI and FinFET technologies (below 28 nm)
- "Remote" static power analysis attacks
- Improved countermeasures against static power analysis attacks

Thank you very much for your attention.